Metamath Proof Explorer


Theorem om1tset

Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o O = J Ω 1 Y
om1bas.j φ J TopOn X
om1bas.y φ Y X
Assertion om1tset φ J ^ ko II = TopSet O

Proof

Step Hyp Ref Expression
1 om1bas.o O = J Ω 1 Y
2 om1bas.j φ J TopOn X
3 om1bas.y φ Y X
4 ovex J ^ ko II V
5 eqid Base ndx Base O + ndx * 𝑝 J TopSet ndx J ^ ko II = Base ndx Base O + ndx * 𝑝 J TopSet ndx J ^ ko II
6 5 topgrptset J ^ ko II V J ^ ko II = TopSet Base ndx Base O + ndx * 𝑝 J TopSet ndx J ^ ko II
7 4 6 ax-mp J ^ ko II = TopSet Base ndx Base O + ndx * 𝑝 J TopSet ndx J ^ ko II
8 eqidd φ Base O = Base O
9 1 2 3 8 om1bas φ Base O = f II Cn J | f 0 = Y f 1 = Y
10 eqidd φ * 𝑝 J = * 𝑝 J
11 eqidd φ J ^ ko II = J ^ ko II
12 1 9 10 11 2 3 om1val φ O = Base ndx Base O + ndx * 𝑝 J TopSet ndx J ^ ko II
13 12 fveq2d φ TopSet O = TopSet Base ndx Base O + ndx * 𝑝 J TopSet ndx J ^ ko II
14 7 13 eqtr4id φ J ^ ko II = TopSet O