Metamath Proof Explorer


Theorem om1tset

Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o O=JΩ1Y
om1bas.j φJTopOnX
om1bas.y φYX
Assertion om1tset φJ^koII=TopSetO

Proof

Step Hyp Ref Expression
1 om1bas.o O=JΩ1Y
2 om1bas.j φJTopOnX
3 om1bas.y φYX
4 ovex J^koIIV
5 eqid BasendxBaseO+ndx*𝑝JTopSetndxJ^koII=BasendxBaseO+ndx*𝑝JTopSetndxJ^koII
6 5 topgrptset J^koIIVJ^koII=TopSetBasendxBaseO+ndx*𝑝JTopSetndxJ^koII
7 4 6 ax-mp J^koII=TopSetBasendxBaseO+ndx*𝑝JTopSetndxJ^koII
8 eqidd φBaseO=BaseO
9 1 2 3 8 om1bas φBaseO=fIICnJ|f0=Yf1=Y
10 eqidd φ*𝑝J=*𝑝J
11 eqidd φJ^koII=J^koII
12 1 9 10 11 2 3 om1val φO=BasendxBaseO+ndx*𝑝JTopSetndxJ^koII
13 12 fveq2d φTopSetO=TopSetBasendxBaseO+ndx*𝑝JTopSetndxJ^koII
14 7 13 eqtr4id φJ^koII=TopSetO