Metamath Proof Explorer


Theorem om2uzf1oi

Description: G (see om2uz0i ) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G=recxVx+1Cω
Assertion om2uzf1oi G:ω1-1 ontoC

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G=recxVx+1Cω
3 frfnom recxVx+1CωFnω
4 2 fneq1i GFnωrecxVx+1CωFnω
5 3 4 mpbir GFnω
6 1 2 om2uzrani ranG=C
7 6 eqimssi ranGC
8 df-f G:ωCGFnωranGC
9 5 7 8 mpbir2an G:ωC
10 1 2 om2uzuzi yωGyC
11 eluzelz GyCGy
12 10 11 syl yωGy
13 12 zred yωGy
14 1 2 om2uzuzi zωGzC
15 eluzelz GzCGz
16 14 15 syl zωGz
17 16 zred zωGz
18 lttri3 GyGzGy=Gz¬Gy<Gz¬Gz<Gy
19 13 17 18 syl2an yωzωGy=Gz¬Gy<Gz¬Gz<Gy
20 ioran ¬Gy<GzGz<Gy¬Gy<Gz¬Gz<Gy
21 19 20 bitr4di yωzωGy=Gz¬Gy<GzGz<Gy
22 nnord yωOrdy
23 nnord zωOrdz
24 ordtri3 OrdyOrdzy=z¬yzzy
25 22 23 24 syl2an yωzωy=z¬yzzy
26 25 con2bid yωzωyzzy¬y=z
27 1 2 om2uzlti yωzωyzGy<Gz
28 1 2 om2uzlti zωyωzyGz<Gy
29 28 ancoms yωzωzyGz<Gy
30 27 29 orim12d yωzωyzzyGy<GzGz<Gy
31 26 30 sylbird yωzω¬y=zGy<GzGz<Gy
32 31 con1d yωzω¬Gy<GzGz<Gyy=z
33 21 32 sylbid yωzωGy=Gzy=z
34 33 rgen2 yωzωGy=Gzy=z
35 dff13 G:ω1-1CG:ωCyωzωGy=Gzy=z
36 9 34 35 mpbir2an G:ω1-1C
37 dff1o5 G:ω1-1 ontoCG:ω1-1CranG=C
38 36 6 37 mpbir2an G:ω1-1 ontoC