Metamath Proof Explorer


Theorem om2uzoi

Description: An alternative definition of G in terms of df-oi . (Contributed by Mario Carneiro, 2-Jun-2015)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G=recxVx+1Cω
Assertion om2uzoi G=OrdIso<C

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G=recxVx+1Cω
3 ordom Ordω
4 1 2 om2uzisoi GIsomE,<ωC
5 3 4 pm3.2i OrdωGIsomE,<ωC
6 ordwe OrdωEWeω
7 3 6 ax-mp EWeω
8 isowe GIsomE,<ωCEWeω<WeC
9 4 8 ax-mp EWeω<WeC
10 7 9 mpbi <WeC
11 fvex CV
12 exse CV<SeC
13 11 12 ax-mp <SeC
14 eqid OrdIso<C=OrdIso<C
15 14 oieu <WeC<SeCOrdωGIsomE,<ωCω=domOrdIso<CG=OrdIso<C
16 10 13 15 mp2an OrdωGIsomE,<ωCω=domOrdIso<CG=OrdIso<C
17 5 16 mpbi ω=domOrdIso<CG=OrdIso<C
18 17 simpri G=OrdIso<C