Metamath Proof Explorer


Theorem omef

Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omef.o φOOutMeas
omef.x X=domO
Assertion omef φO:𝒫X0+∞

Proof

Step Hyp Ref Expression
1 omef.o φOOutMeas
2 omef.x X=domO
3 isome OOutMeasOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
4 1 3 syl φOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
5 1 4 mpbid φO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
6 5 simplld φO:domO0+∞domO=𝒫domOO=0
7 6 simplld φO:domO0+∞
8 2 pweqi 𝒫X=𝒫domO
9 simp-4r O:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^OydomO=𝒫domO
10 5 9 syl φdomO=𝒫domO
11 8 10 eqtr4id φ𝒫X=domO
12 11 feq2d φO:𝒫X0+∞O:domO0+∞
13 7 12 mpbird φO:𝒫X0+∞