Metamath Proof Explorer


Theorem omelesplit

Description: The outer measure of a set A is less than or equal to the extended addition of the outer measures of the decomposition induced on A by any E . Step (a) in the proof of Caratheodory's Method, Theorem 113C of Fremlin1 p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omelesplit.1 φOOutMeas
omelesplit.2 X=domO
omelesplit.3 φAX
Assertion omelesplit φOAOAE+𝑒OAE

Proof

Step Hyp Ref Expression
1 omelesplit.1 φOOutMeas
2 omelesplit.2 X=domO
3 omelesplit.3 φAX
4 inundif AEAE=A
5 4 eqcomi A=AEAE
6 5 a1i φA=AEAE
7 6 fveq2d φOA=OAEAE
8 ssinss1 AXAEX
9 3 8 syl φAEX
10 3 ssdifssd φAEX
11 1 2 9 10 omeunle φOAEAEOAE+𝑒OAE
12 7 11 eqbrtrd φOAOAE+𝑒OAE