Metamath Proof Explorer


Theorem omlim2

Description: The non-zero product with an limit ordinal on the right is a limit ordinal. Lemma 3.13 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omlim2 AOnALimBBVLimA𝑜B

Proof

Step Hyp Ref Expression
1 simpll AOnALimBBVAOn
2 simpr AOnALimBBVLimBBV
3 2 ancomd AOnALimBBVBVLimB
4 on0eln0 AOnAA
5 4 biimpar AOnAA
6 5 adantr AOnALimBBVA
7 omlimcl AOnBVLimBALimA𝑜B
8 1 3 6 7 syl21anc AOnALimBBVLimA𝑜B