Description: The non-zero product with an limit ordinal on the right is a limit ordinal. Lemma 3.13 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | omlim2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | simpr | |
|
3 | 2 | ancomd | |
4 | on0eln0 | |
|
5 | 4 | biimpar | |
6 | 5 | adantr | |
7 | omlimcl | |
|
8 | 1 3 6 7 | syl21anc | |