Metamath Proof Explorer


Theorem omltoe

Description: Exponentiation eventually dominates multiplication. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion omltoe AOnBOn1𝑜AABB𝑜AB𝑜A

Proof

Step Hyp Ref Expression
1 simpr AOnBOnBOn
2 1 adantr AOnBOn1𝑜AABBOn
3 oe2 BOnB𝑜B=B𝑜2𝑜
4 2 3 syl AOnBOn1𝑜AABB𝑜B=B𝑜2𝑜
5 2on 2𝑜On
6 5 a1i AOnBOn2𝑜On
7 simpl AOnBOnAOn
8 6 7 1 3jca AOnBOn2𝑜OnAOnBOn
9 8 adantr AOnBOn1𝑜AAB2𝑜OnAOnBOn
10 simpr 1𝑜AABAB
11 10 adantl AOnBOn1𝑜AABAB
12 11 ne0d AOnBOn1𝑜AABB
13 on0eln0 BOnBB
14 2 13 syl AOnBOn1𝑜AABBB
15 12 14 mpbird AOnBOn1𝑜AABB
16 9 15 jca AOnBOn1𝑜AAB2𝑜OnAOnBOnB
17 df-2o 2𝑜=suc1𝑜
18 17 a1i AOnBOn1𝑜AAB2𝑜=suc1𝑜
19 simpl 1𝑜AAB1𝑜A
20 19 adantl AOnBOn1𝑜AAB1𝑜A
21 eloni AOnOrdA
22 21 adantr AOnBOnOrdA
23 22 adantr AOnBOn1𝑜AABOrdA
24 20 23 jca AOnBOn1𝑜AAB1𝑜AOrdA
25 ordelsuc 1𝑜AOrdA1𝑜Asuc1𝑜A
26 25 biimpd 1𝑜AOrdA1𝑜Asuc1𝑜A
27 24 20 26 sylc AOnBOn1𝑜AABsuc1𝑜A
28 18 27 eqsstrd AOnBOn1𝑜AAB2𝑜A
29 oewordi 2𝑜OnAOnBOnB2𝑜AB𝑜2𝑜B𝑜A
30 16 28 29 sylc AOnBOn1𝑜AABB𝑜2𝑜B𝑜A
31 4 30 eqsstrd AOnBOn1𝑜AABB𝑜BB𝑜A
32 2 2 15 jca31 AOnBOn1𝑜AABBOnBOnB
33 omordi BOnBOnBABB𝑜AB𝑜B
34 32 11 33 sylc AOnBOn1𝑜AABB𝑜AB𝑜B
35 31 34 sseldd AOnBOn1𝑜AABB𝑜AB𝑜A
36 35 ex AOnBOn1𝑜AABB𝑜AB𝑜A