Metamath Proof Explorer


Theorem omnord1

Description: When the same non-zero ordinal is multiplied on the right, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of Schloeder p. 10. (Contributed by RP, 4-Feb-2025)

Ref Expression
Assertion omnord1 aOnbOncOn1𝑜¬aba𝑜cb𝑜c

Proof

Step Hyp Ref Expression
1 omnord1ex ¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ω
2 1on 1𝑜On
3 2on 2𝑜On
4 omelon ωOn
5 peano1 ω
6 ondif1 ωOn1𝑜ωOnω
7 4 5 6 mpbir2an ωOn1𝑜
8 oveq2 c=ω1𝑜𝑜c=1𝑜𝑜ω
9 oveq2 c=ω2𝑜𝑜c=2𝑜𝑜ω
10 8 9 eleq12d c=ω1𝑜𝑜c2𝑜𝑜c1𝑜𝑜ω2𝑜𝑜ω
11 10 bibi2d c=ω1𝑜2𝑜1𝑜𝑜c2𝑜𝑜c1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ω
12 11 notbid c=ω¬1𝑜2𝑜1𝑜𝑜c2𝑜𝑜c¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ω
13 12 rspcev ωOn1𝑜¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ωcOn1𝑜¬1𝑜2𝑜1𝑜𝑜c2𝑜𝑜c
14 7 13 mpan ¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ωcOn1𝑜¬1𝑜2𝑜1𝑜𝑜c2𝑜𝑜c
15 eleq2 b=2𝑜1𝑜b1𝑜2𝑜
16 oveq1 b=2𝑜b𝑜c=2𝑜𝑜c
17 16 eleq2d b=2𝑜1𝑜𝑜cb𝑜c1𝑜𝑜c2𝑜𝑜c
18 15 17 bibi12d b=2𝑜1𝑜b1𝑜𝑜cb𝑜c1𝑜2𝑜1𝑜𝑜c2𝑜𝑜c
19 18 notbid b=2𝑜¬1𝑜b1𝑜𝑜cb𝑜c¬1𝑜2𝑜1𝑜𝑜c2𝑜𝑜c
20 19 rexbidv b=2𝑜cOn1𝑜¬1𝑜b1𝑜𝑜cb𝑜ccOn1𝑜¬1𝑜2𝑜1𝑜𝑜c2𝑜𝑜c
21 20 rspcev 2𝑜OncOn1𝑜¬1𝑜2𝑜1𝑜𝑜c2𝑜𝑜cbOncOn1𝑜¬1𝑜b1𝑜𝑜cb𝑜c
22 3 14 21 sylancr ¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ωbOncOn1𝑜¬1𝑜b1𝑜𝑜cb𝑜c
23 eleq1 a=1𝑜ab1𝑜b
24 oveq1 a=1𝑜a𝑜c=1𝑜𝑜c
25 24 eleq1d a=1𝑜a𝑜cb𝑜c1𝑜𝑜cb𝑜c
26 23 25 bibi12d a=1𝑜aba𝑜cb𝑜c1𝑜b1𝑜𝑜cb𝑜c
27 26 notbid a=1𝑜¬aba𝑜cb𝑜c¬1𝑜b1𝑜𝑜cb𝑜c
28 27 rexbidv a=1𝑜cOn1𝑜¬aba𝑜cb𝑜ccOn1𝑜¬1𝑜b1𝑜𝑜cb𝑜c
29 28 rexbidv a=1𝑜bOncOn1𝑜¬aba𝑜cb𝑜cbOncOn1𝑜¬1𝑜b1𝑜𝑜cb𝑜c
30 29 rspcev 1𝑜OnbOncOn1𝑜¬1𝑜b1𝑜𝑜cb𝑜caOnbOncOn1𝑜¬aba𝑜cb𝑜c
31 2 22 30 sylancr ¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ωaOnbOncOn1𝑜¬aba𝑜cb𝑜c
32 1 31 ax-mp aOnbOncOn1𝑜¬aba𝑜cb𝑜c