Metamath Proof Explorer


Theorem omord

Description: Ordering property of ordinal multiplication. Proposition 8.19 of TakeutiZaring p. 63. Theorem 3.16 of Schloeder p. 9. (Contributed by NM, 14-Dec-2004)

Ref Expression
Assertion omord AOnBOnCOnABCC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 omord2 AOnBOnCOnCABC𝑜AC𝑜B
2 1 ex AOnBOnCOnCABC𝑜AC𝑜B
3 2 pm5.32rd AOnBOnCOnABCC𝑜AC𝑜BC
4 simpl C𝑜AC𝑜BCC𝑜AC𝑜B
5 ne0i C𝑜AC𝑜BC𝑜B
6 om0r BOn𝑜B=
7 oveq1 C=C𝑜B=𝑜B
8 7 eqeq1d C=C𝑜B=𝑜B=
9 6 8 syl5ibrcom BOnC=C𝑜B=
10 9 necon3d BOnC𝑜BC
11 5 10 syl5 BOnC𝑜AC𝑜BC
12 11 adantr BOnCOnC𝑜AC𝑜BC
13 on0eln0 COnCC
14 13 adantl BOnCOnCC
15 12 14 sylibrd BOnCOnC𝑜AC𝑜BC
16 15 3adant1 AOnBOnCOnC𝑜AC𝑜BC
17 16 ancld AOnBOnCOnC𝑜AC𝑜BC𝑜AC𝑜BC
18 4 17 impbid2 AOnBOnCOnC𝑜AC𝑜BCC𝑜AC𝑜B
19 3 18 bitrd AOnBOnCOnABCC𝑜AC𝑜B