Description: For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onexomgt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon | |
|
2 | peano1 | |
|
3 | 2 | ne0ii | |
4 | omeu | |
|
5 | 1 3 4 | mp3an13 | |
6 | euex | |
|
7 | onsuc | |
|
8 | 7 | adantr | |
9 | simpr | |
|
10 | simpr | |
|
11 | simpl | |
|
12 | omcl | |
|
13 | 1 11 12 | sylancr | |
14 | oaordi | |
|
15 | 1 13 14 | sylancr | |
16 | 10 15 | mpd | |
17 | omsuc | |
|
18 | 1 11 17 | sylancr | |
19 | 16 18 | eleqtrrd | |
20 | 19 | adantr | |
21 | 9 20 | eqeltrrd | |
22 | oveq2 | |
|
23 | 22 | eleq2d | |
24 | 23 | rspcev | |
25 | 8 21 24 | syl2an2r | |
26 | 25 | ex | |
27 | 26 | adantld | |
28 | 27 | a1i | |
29 | 28 | rexlimdvv | |
30 | 29 | exlimdv | |
31 | 6 30 | syl5 | |
32 | 5 31 | mpd | |