Metamath Proof Explorer


Theorem onexomgt

Description: For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025)

Ref Expression
Assertion onexomgt AOnxOnAω𝑜x

Proof

Step Hyp Ref Expression
1 omelon ωOn
2 peano1 ω
3 2 ne0ii ω
4 omeu ωOnAOnω∃!caOnbωc=abω𝑜a+𝑜b=A
5 1 3 4 mp3an13 AOn∃!caOnbωc=abω𝑜a+𝑜b=A
6 euex ∃!caOnbωc=abω𝑜a+𝑜b=AcaOnbωc=abω𝑜a+𝑜b=A
7 onsuc aOnsucaOn
8 7 adantr aOnbωsucaOn
9 simpr aOnbωω𝑜a+𝑜b=Aω𝑜a+𝑜b=A
10 simpr aOnbωbω
11 simpl aOnbωaOn
12 omcl ωOnaOnω𝑜aOn
13 1 11 12 sylancr aOnbωω𝑜aOn
14 oaordi ωOnω𝑜aOnbωω𝑜a+𝑜bω𝑜a+𝑜ω
15 1 13 14 sylancr aOnbωbωω𝑜a+𝑜bω𝑜a+𝑜ω
16 10 15 mpd aOnbωω𝑜a+𝑜bω𝑜a+𝑜ω
17 omsuc ωOnaOnω𝑜suca=ω𝑜a+𝑜ω
18 1 11 17 sylancr aOnbωω𝑜suca=ω𝑜a+𝑜ω
19 16 18 eleqtrrd aOnbωω𝑜a+𝑜bω𝑜suca
20 19 adantr aOnbωω𝑜a+𝑜b=Aω𝑜a+𝑜bω𝑜suca
21 9 20 eqeltrrd aOnbωω𝑜a+𝑜b=AAω𝑜suca
22 oveq2 x=sucaω𝑜x=ω𝑜suca
23 22 eleq2d x=sucaAω𝑜xAω𝑜suca
24 23 rspcev sucaOnAω𝑜sucaxOnAω𝑜x
25 8 21 24 syl2an2r aOnbωω𝑜a+𝑜b=AxOnAω𝑜x
26 25 ex aOnbωω𝑜a+𝑜b=AxOnAω𝑜x
27 26 adantld aOnbωc=abω𝑜a+𝑜b=AxOnAω𝑜x
28 27 a1i AOnaOnbωc=abω𝑜a+𝑜b=AxOnAω𝑜x
29 28 rexlimdvv AOnaOnbωc=abω𝑜a+𝑜b=AxOnAω𝑜x
30 29 exlimdv AOncaOnbωc=abω𝑜a+𝑜b=AxOnAω𝑜x
31 6 30 syl5 AOn∃!caOnbωc=abω𝑜a+𝑜b=AxOnAω𝑜x
32 5 31 mpd AOnxOnAω𝑜x