1:: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. ( ( y e. ( a i^i x ) /\ ( ( a
i^i
x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ).
|
2:1: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( a i^i y ) ).
|
3:2: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. a ).
|
4:: | |- (. ( a C_ On /\ a =/= (/) ) ->. ( a
C_ On /\ a =/= (/) ) ).
|
5:: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. ( x e. a /\ -. ( a i^i x ) = (/) ) ).
|
6:5: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. x e. a ).
|
7:4: | |- (. ( a C_ On /\ a =/= (/) ) ->. a C_
On ).
|
8:6,7: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. x e. On ).
|
9:8: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. Ord x ).
|
10:9: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. Tr x ).
|
11:1: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. y e. ( a i^i x ) ).
|
12:11: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. y e. x ).
|
13:2: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. y ).
|
14:10,12,13: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. x ).
|
15:3,14: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( a i^i x ) ).
|
16:13,15: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i
y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( ( a i^i x ) i^i y ) ).
|
17:16: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ).
|
18:17: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) )
).
|
19:18: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. ( a i^i y ) C_ ( ( a i^i x ) i^i y ) ).
|
20:: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ).
|
21:20: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. ( ( a i^i x ) i^i y ) = (/) ).
|
22:19,21: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. ( a i^i y ) = (/) ).
|
23:20: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. y e. ( a i^i x ) ).
|
24:23: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. y e. a ).
|
25:22,24: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i
y
) = (/) ) ->. ( y e. a /\ ( a i^i y ) = (/) ) ).
|
26:25: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. ( ( y e. ( a i^i x ) /\ ( ( a i^i x )
i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ).
|
27:26: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. A. y ( ( y e. ( a i^i x ) /\ ( ( a i^i
x
) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ).
|
28:27: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. ( E. y ( y e. ( a i^i x ) /\ ( ( a i^i
x
) i^i y ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ).
|
29:: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. E. y e. ( a i^i x ) ( ( a i^i x ) i^i
y
) = (/) ).
|
30:29: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. E. y ( y e. ( a i^i x ) /\ ( ( a i^i x
)
i^i y ) = (/) ) ).
|
31:28,30: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. E. y ( y e. a /\ ( a i^i y ) = (/) )
).
|
qed:31: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ).
|