Metamath Proof Explorer


Theorem onfrALTlem2VD

Description: Virtual deduction proof of onfrALTlem2 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 is onfrALTlem2VD without virtual deductions and was automatically derived from onfrALTlem2VD .

1:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ).
2:1: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( a i^i y ) ).
3:2: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. a ).
4:: |- (. ( a C_ On /\ a =/= (/) ) ->. ( a C_ On /\ a =/= (/) ) ).
5:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( x e. a /\ -. ( a i^i x ) = (/) ) ).
6:5: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. a ).
7:4: |- (. ( a C_ On /\ a =/= (/) ) ->. a C_ On ).
8:6,7: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. On ).
9:8: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Ord x ).
10:9: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Tr x ).
11:1: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. y e. ( a i^i x ) ).
12:11: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. y e. x ).
13:2: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. y ).
14:10,12,13: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. x ).
15:3,14: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( a i^i x ) ).
16:13,15: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( ( a i^i x ) i^i y ) ).
17:16: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ).
18:17: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ).
19:18: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( a i^i y ) C_ ( ( a i^i x ) i^i y ) ).
20:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ).
21:20: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( ( a i^i x ) i^i y ) = (/) ).
22:19,21: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( a i^i y ) = (/) ).
23:20: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. y e. ( a i^i x ) ).
24:23: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. y e. a ).
25:22,24: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( y e. a /\ ( a i^i y ) = (/) ) ).
26:25: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ).
27:26: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. A. y ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ).
28:27: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ).
29:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ).
30:29: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ).
31:28,30: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y ( y e. a /\ ( a i^i y ) = (/) ) ).
qed:31: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ).
(Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem2VD aOna,xa¬ax=yaay=

Proof

Step Hyp Ref Expression
1 idn3 aOna,xa¬ax=,yaxaxy=zayyaxaxy=zay
2 simpr yaxaxy=zayzay
3 1 2 e3 aOna,xa¬ax=,yaxaxy=zayzay
4 inss2 ayy
5 4 sseli zayzy
6 3 5 e3 aOna,xa¬ax=,yaxaxy=zayzy
7 inss1 aya
8 7 sseli zayza
9 3 8 e3 aOna,xa¬ax=,yaxaxy=zayza
10 idn2 aOna,xa¬ax=xa¬ax=
11 simpl xa¬ax=xa
12 10 11 e2 aOna,xa¬ax=xa
13 idn1 aOnaaOna
14 simpl aOnaaOn
15 13 14 e1a aOnaaOn
16 ssel aOnxaxOn
17 16 com12 xaaOnxOn
18 12 15 17 e21 aOna,xa¬ax=xOn
19 eloni xOnOrdx
20 18 19 e2 aOna,xa¬ax=Ordx
21 ordtr OrdxTrx
22 20 21 e2 aOna,xa¬ax=Trx
23 simpll yaxaxy=zayyax
24 1 23 e3 aOna,xa¬ax=,yaxaxy=zayyax
25 inss2 axx
26 25 sseli yaxyx
27 24 26 e3 aOna,xa¬ax=,yaxaxy=zayyx
28 trel Trxzyyxzx
29 28 expcomd Trxyxzyzx
30 22 27 6 29 e233 aOna,xa¬ax=,yaxaxy=zayzx
31 elin zaxzazx
32 31 simplbi2 zazxzax
33 9 30 32 e33 aOna,xa¬ax=,yaxaxy=zayzax
34 elin zaxyzaxzy
35 34 simplbi2com zyzaxzaxy
36 6 33 35 e33 aOna,xa¬ax=,yaxaxy=zayzaxy
37 36 in3an aOna,xa¬ax=,yaxaxy=zayzaxy
38 37 gen31 aOna,xa¬ax=,yaxaxy=zzayzaxy
39 dfss2 ayaxyzzayzaxy
40 39 biimpri zzayzaxyayaxy
41 38 40 e3 aOna,xa¬ax=,yaxaxy=ayaxy
42 idn3 aOna,xa¬ax=,yaxaxy=yaxaxy=
43 simpr yaxaxy=axy=
44 42 43 e3 aOna,xa¬ax=,yaxaxy=axy=
45 sseq0 ayaxyaxy=ay=
46 45 ex ayaxyaxy=ay=
47 41 44 46 e33 aOna,xa¬ax=,yaxaxy=ay=
48 simpl yaxaxy=yax
49 42 48 e3 aOna,xa¬ax=,yaxaxy=yax
50 inss1 axa
51 50 sseli yaxya
52 49 51 e3 aOna,xa¬ax=,yaxaxy=ya
53 pm3.21 ay=yayaay=
54 47 52 53 e33 aOna,xa¬ax=,yaxaxy=yaay=
55 54 in3 aOna,xa¬ax=yaxaxy=yaay=
56 55 gen21 aOna,xa¬ax=yyaxaxy=yaay=
57 exim yyaxaxy=yaay=yyaxaxy=yyaay=
58 56 57 e2 aOna,xa¬ax=yyaxaxy=yyaay=
59 onfrALTlem3VD aOna,xa¬ax=yaxaxy=
60 df-rex yaxaxy=yyaxaxy=
61 60 biimpi yaxaxy=yyaxaxy=
62 59 61 e2 aOna,xa¬ax=yyaxaxy=
63 id yyaxaxy=yyaay=yyaxaxy=yyaay=
64 58 62 63 e22 aOna,xa¬ax=yyaay=
65 df-rex yaay=yyaay=
66 65 biimpri yyaay=yaay=
67 64 66 e2 aOna,xa¬ax=yaay=