Metamath Proof Explorer


Theorem onminex

Description: If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997) (Proof shortened by Mario Carneiro, 20-Nov-2016)

Ref Expression
Hypothesis onminex.1 x = y φ ψ
Assertion onminex x On φ x On φ y x ¬ ψ

Proof

Step Hyp Ref Expression
1 onminex.1 x = y φ ψ
2 ssrab2 x On | φ On
3 rabn0 x On | φ x On φ
4 3 biimpri x On φ x On | φ
5 oninton x On | φ On x On | φ x On | φ On
6 2 4 5 sylancr x On φ x On | φ On
7 onminesb x On φ [˙ x On | φ / x]˙ φ
8 onss x On | φ On x On | φ On
9 6 8 syl x On φ x On | φ On
10 9 sseld x On φ y x On | φ y On
11 1 onnminsb y On y x On | φ ¬ ψ
12 10 11 syli x On φ y x On | φ ¬ ψ
13 12 ralrimiv x On φ y x On | φ ¬ ψ
14 dfsbcq2 z = x On | φ z x φ [˙ x On | φ / x]˙ φ
15 raleq z = x On | φ y z ¬ ψ y x On | φ ¬ ψ
16 14 15 anbi12d z = x On | φ z x φ y z ¬ ψ [˙ x On | φ / x]˙ φ y x On | φ ¬ ψ
17 16 rspcev x On | φ On [˙ x On | φ / x]˙ φ y x On | φ ¬ ψ z On z x φ y z ¬ ψ
18 6 7 13 17 syl12anc x On φ z On z x φ y z ¬ ψ
19 nfv z φ y x ¬ ψ
20 nfs1v x z x φ
21 nfv x y z ¬ ψ
22 20 21 nfan x z x φ y z ¬ ψ
23 sbequ12 x = z φ z x φ
24 raleq x = z y x ¬ ψ y z ¬ ψ
25 23 24 anbi12d x = z φ y x ¬ ψ z x φ y z ¬ ψ
26 19 22 25 cbvrexw x On φ y x ¬ ψ z On z x φ y z ¬ ψ
27 18 26 sylibr x On φ x On φ y x ¬ ψ