Description: The successor operation is a bijective function between the ordinals and the class of succesor ordinals. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onsucf1o.f | |
|
Assertion | onsucf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsucf1o.f | |
|
2 | 1 | fin1a2lem2 | |
3 | f1fn | |
|
4 | 2 3 | ax-mp | |
5 | 1 | onsucrn | |
6 | 1 | fin1a2lem1 | |
7 | 1 | fin1a2lem1 | |
8 | 6 7 | eqeqan12d | |
9 | suc11 | |
|
10 | 8 9 | bitrd | |
11 | 10 | biimpd | |
12 | 11 | rgen2 | |
13 | dff1o6 | |
|
14 | 4 5 12 13 | mpbir3an | |