Metamath Proof Explorer


Theorem onsucf1o

Description: The successor operation is a bijective function between the ordinals and the class of succesor ordinals. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)

Ref Expression
Hypothesis onsucf1o.f F=xOnsucx
Assertion onsucf1o F:On1-1 ontoaOn|bOna=sucb

Proof

Step Hyp Ref Expression
1 onsucf1o.f F=xOnsucx
2 1 fin1a2lem2 F:On1-1On
3 f1fn F:On1-1OnFFnOn
4 2 3 ax-mp FFnOn
5 1 onsucrn ranF=aOn|bOna=sucb
6 1 fin1a2lem1 aOnFa=suca
7 1 fin1a2lem1 bOnFb=sucb
8 6 7 eqeqan12d aOnbOnFa=Fbsuca=sucb
9 suc11 aOnbOnsuca=sucba=b
10 8 9 bitrd aOnbOnFa=Fba=b
11 10 biimpd aOnbOnFa=Fba=b
12 11 rgen2 aOnbOnFa=Fba=b
13 dff1o6 F:On1-1 ontoaOn|bOna=sucbFFnOnranF=aOn|bOna=sucbaOnbOnFa=Fba=b
14 4 5 12 13 mpbir3an F:On1-1 ontoaOn|bOna=sucb