Metamath Proof Explorer


Theorem opeliunxp2

Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis opeliunxp2.1 x=CB=E
Assertion opeliunxp2 CDxAx×BCADE

Proof

Step Hyp Ref Expression
1 opeliunxp2.1 x=CB=E
2 df-br CxAx×BDCDxAx×B
3 relxp Relx×B
4 3 rgenw xARelx×B
5 reliun RelxAx×BxARelx×B
6 4 5 mpbir RelxAx×B
7 6 brrelex1i CxAx×BDCV
8 2 7 sylbir CDxAx×BCV
9 elex CACV
10 9 adantr CADECV
11 nfiu1 _xxAx×B
12 11 nfel2 xCDxAx×B
13 nfv xCADE
14 12 13 nfbi xCDxAx×BCADE
15 opeq1 x=CxD=CD
16 15 eleq1d x=CxDxAx×BCDxAx×B
17 eleq1 x=CxACA
18 1 eleq2d x=CDBDE
19 17 18 anbi12d x=CxADBCADE
20 16 19 bibi12d x=CxDxAx×BxADBCDxAx×BCADE
21 opeliunxp xDxAx×BxADB
22 14 20 21 vtoclg1f CVCDxAx×BCADE
23 8 10 22 pm5.21nii CDxAx×BCADE