Metamath Proof Explorer


Theorem opltcon1b

Description: Contraposition law for strict ordering in orthoposets. ( chpsscon1 analog.) (Contributed by NM, 5-Nov-2011)

Ref Expression
Hypotheses opltcon3.b B=BaseK
opltcon3.s <˙=<K
opltcon3.o ˙=ocK
Assertion opltcon1b KOPXBYB˙X<˙Y˙Y<˙X

Proof

Step Hyp Ref Expression
1 opltcon3.b B=BaseK
2 opltcon3.s <˙=<K
3 opltcon3.o ˙=ocK
4 1 3 opoccl KOPXB˙XB
5 4 3adant3 KOPXBYB˙XB
6 1 2 3 opltcon3b KOP˙XBYB˙X<˙Y˙Y<˙˙˙X
7 5 6 syld3an2 KOPXBYB˙X<˙Y˙Y<˙˙˙X
8 1 3 opococ KOPXB˙˙X=X
9 8 3adant3 KOPXBYB˙˙X=X
10 9 breq2d KOPXBYB˙Y<˙˙˙X˙Y<˙X
11 7 10 bitrd KOPXBYB˙X<˙Y˙Y<˙X