Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | neips.1 | |
|
Assertion | opnneissb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neips.1 | |
|
2 | 1 | eltopss | |
3 | 2 | adantr | |
4 | ssid | |
|
5 | sseq2 | |
|
6 | sseq1 | |
|
7 | 5 6 | anbi12d | |
8 | 7 | rspcev | |
9 | 4 8 | mpanr2 | |
10 | 9 | ad2ant2l | |
11 | 1 | isnei | |
12 | 11 | ad2ant2r | |
13 | 3 10 12 | mpbir2and | |
14 | 13 | exp43 | |
15 | 14 | 3imp | |
16 | ssnei | |
|
17 | 16 | ex | |
18 | 17 | 3ad2ant1 | |
19 | 15 18 | impbid | |