Metamath Proof Explorer


Theorem opnneissb

Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006)

Ref Expression
Hypothesis neips.1 X=J
Assertion opnneissb JTopNJSXSNNneiJS

Proof

Step Hyp Ref Expression
1 neips.1 X=J
2 1 eltopss JTopNJNX
3 2 adantr JTopNJSXSNNX
4 ssid NN
5 sseq2 g=NSgSN
6 sseq1 g=NgNNN
7 5 6 anbi12d g=NSggNSNNN
8 7 rspcev NJSNNNgJSggN
9 4 8 mpanr2 NJSNgJSggN
10 9 ad2ant2l JTopNJSXSNgJSggN
11 1 isnei JTopSXNneiJSNXgJSggN
12 11 ad2ant2r JTopNJSXSNNneiJSNXgJSggN
13 3 10 12 mpbir2and JTopNJSXSNNneiJS
14 13 exp43 JTopNJSXSNNneiJS
15 14 3imp JTopNJSXSNNneiJS
16 ssnei JTopNneiJSSN
17 16 ex JTopNneiJSSN
18 17 3ad2ant1 JTopNJSXNneiJSSN
19 15 18 impbid JTopNJSXSNNneiJS