Metamath Proof Explorer


Theorem oppcbasOLD

Description: Obsolete version of oppcbas as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses oppcbas.1 O=oppCatC
oppcbas.2 B=BaseC
Assertion oppcbasOLD B=BaseO

Proof

Step Hyp Ref Expression
1 oppcbas.1 O=oppCatC
2 oppcbas.2 B=BaseC
3 baseid Base=SlotBasendx
4 1re 1
5 1nn 1
6 4nn0 40
7 1nn0 10
8 1lt10 1<10
9 5 6 7 8 declti 1<14
10 4 9 ltneii 114
11 basendx Basendx=1
12 homndx Homndx=14
13 11 12 neeq12i BasendxHomndx114
14 10 13 mpbir BasendxHomndx
15 3 14 setsnid BaseC=BaseCsSetHomndxtposHomC
16 5nn 5
17 4lt5 4<5
18 7 6 16 17 declt 14<15
19 4nn 4
20 7 19 decnncl 14
21 20 nnrei 14
22 7 16 decnncl 15
23 22 nnrei 15
24 4 21 23 lttri 1<1414<151<15
25 9 18 24 mp2an 1<15
26 4 25 ltneii 115
27 ccondx compndx=15
28 11 27 neeq12i Basendxcompndx115
29 26 28 mpbir Basendxcompndx
30 3 29 setsnid BaseCsSetHomndxtposHomC=BaseCsSetHomndxtposHomCsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
31 15 30 eqtri BaseC=BaseCsSetHomndxtposHomCsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
32 eqid BaseC=BaseC
33 eqid HomC=HomC
34 eqid compC=compC
35 32 33 34 1 oppcval CVO=CsSetHomndxtposHomCsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
36 35 fveq2d CVBaseO=BaseCsSetHomndxtposHomCsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
37 31 36 eqtr4id CVBaseC=BaseO
38 base0 =Base
39 fvprc ¬CVBaseC=
40 fvprc ¬CVoppCatC=
41 1 40 eqtrid ¬CVO=
42 41 fveq2d ¬CVBaseO=Base
43 38 39 42 3eqtr4a ¬CVBaseC=BaseO
44 37 43 pm2.61i BaseC=BaseO
45 2 44 eqtri B=BaseO