Metamath Proof Explorer


Theorem oppchomfvalOLD

Description: Obsolete proof of oppchomfval as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses oppchom.h H=HomC
oppchom.o O=oppCatC
Assertion oppchomfvalOLD tposH=HomO

Proof

Step Hyp Ref Expression
1 oppchom.h H=HomC
2 oppchom.o O=oppCatC
3 homid Hom=SlotHomndx
4 1nn0 10
5 4nn 4
6 4 5 decnncl 14
7 6 nnrei 14
8 4nn0 40
9 5nn 5
10 4lt5 4<5
11 4 8 9 10 declt 14<15
12 7 11 ltneii 1415
13 homndx Homndx=14
14 ccondx compndx=15
15 13 14 neeq12i Homndxcompndx1415
16 12 15 mpbir Homndxcompndx
17 3 16 setsnid HomCsSetHomndxtposH=HomCsSetHomndxtposHsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
18 1 fvexi HV
19 18 tposex tposHV
20 3 setsid CVtposHVtposH=HomCsSetHomndxtposH
21 19 20 mpan2 CVtposH=HomCsSetHomndxtposH
22 eqid BaseC=BaseC
23 eqid compC=compC
24 22 1 23 2 oppcval CVO=CsSetHomndxtposHsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
25 24 fveq2d CVHomO=HomCsSetHomndxtposHsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
26 17 21 25 3eqtr4a CVtposH=HomO
27 tpos0 tpos=
28 fvprc ¬CVHomC=
29 1 28 eqtrid ¬CVH=
30 29 tposeqd ¬CVtposH=tpos
31 fvprc ¬CVoppCatC=
32 2 31 eqtrid ¬CVO=
33 32 fveq2d ¬CVHomO=Hom
34 df-hom Hom=Slot14
35 34 str0 =Hom
36 33 35 eqtr4di ¬CVHomO=
37 27 30 36 3eqtr4a ¬CVtposH=HomO
38 26 37 pm2.61i tposH=HomO