Metamath Proof Explorer


Theorem oppggrp

Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypothesis oppgbas.1 O=opp𝑔R
Assertion oppggrp RGrpOGrp

Proof

Step Hyp Ref Expression
1 oppgbas.1 O=opp𝑔R
2 eqid BaseR=BaseR
3 1 2 oppgbas BaseR=BaseO
4 3 a1i RGrpBaseR=BaseO
5 eqidd RGrp+O=+O
6 eqid 0R=0R
7 1 6 oppgid 0R=0O
8 7 a1i RGrp0R=0O
9 grpmnd RGrpRMnd
10 1 oppgmnd RMndOMnd
11 9 10 syl RGrpOMnd
12 eqid invgR=invgR
13 2 12 grpinvcl RGrpxBaseRinvgRxBaseR
14 eqid +R=+R
15 eqid +O=+O
16 14 1 15 oppgplus invgRx+Ox=x+RinvgRx
17 2 14 6 12 grprinv RGrpxBaseRx+RinvgRx=0R
18 16 17 eqtrid RGrpxBaseRinvgRx+Ox=0R
19 4 5 8 11 13 18 isgrpd2 RGrpOGrp