Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oppgbas.1 | |
|
Assertion | oppggrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.1 | |
|
2 | eqid | |
|
3 | 1 2 | oppgbas | |
4 | 3 | a1i | |
5 | eqidd | |
|
6 | eqid | |
|
7 | 1 6 | oppgid | |
8 | 7 | a1i | |
9 | grpmnd | |
|
10 | 1 | oppgmnd | |
11 | 9 10 | syl | |
12 | eqid | |
|
13 | 2 12 | grpinvcl | |
14 | eqid | |
|
15 | eqid | |
|
16 | 14 1 15 | oppgplus | |
17 | 2 14 6 12 | grprinv | |
18 | 16 17 | eqtrid | |
19 | 4 5 8 11 13 18 | isgrpd2 | |