Metamath Proof Explorer


Theorem oppglsm

Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses oppglsm.o O=opp𝑔G
oppglsm.p ˙=LSSumG
Assertion oppglsm TLSSumOU=U˙T

Proof

Step Hyp Ref Expression
1 oppglsm.o O=opp𝑔G
2 oppglsm.p ˙=LSSumG
3 1 fvexi OV
4 eqid BaseG=BaseG
5 1 4 oppgbas BaseG=BaseO
6 eqid +O=+O
7 eqid LSSumO=LSSumO
8 5 6 7 lsmfval OVLSSumO=t𝒫BaseG,u𝒫BaseGranxt,yux+Oy
9 3 8 ax-mp LSSumO=t𝒫BaseG,u𝒫BaseGranxt,yux+Oy
10 eqid +G=+G
11 4 10 2 lsmfval GV˙=u𝒫BaseG,t𝒫BaseGranyu,xty+Gx
12 11 tposeqd GVtpos˙=tposu𝒫BaseG,t𝒫BaseGranyu,xty+Gx
13 eqid yu,xty+Gx=yu,xty+Gx
14 13 reldmmpo Reldomyu,xty+Gx
15 13 mpofun Funyu,xty+Gx
16 funforn Funyu,xty+Gxyu,xty+Gx:domyu,xty+Gxontoranyu,xty+Gx
17 15 16 mpbi yu,xty+Gx:domyu,xty+Gxontoranyu,xty+Gx
18 tposfo2 Reldomyu,xty+Gxyu,xty+Gx:domyu,xty+Gxontoranyu,xty+Gxtposyu,xty+Gx:domyu,xty+Gx-1ontoranyu,xty+Gx
19 14 17 18 mp2 tposyu,xty+Gx:domyu,xty+Gx-1ontoranyu,xty+Gx
20 forn tposyu,xty+Gx:domyu,xty+Gx-1ontoranyu,xty+Gxrantposyu,xty+Gx=ranyu,xty+Gx
21 19 20 ax-mp rantposyu,xty+Gx=ranyu,xty+Gx
22 10 1 6 oppgplus x+Oy=y+Gx
23 22 eqcomi y+Gx=x+Oy
24 23 a1i yuxty+Gx=x+Oy
25 24 mpoeq3ia yu,xty+Gx=yu,xtx+Oy
26 25 tposmpo tposyu,xty+Gx=xt,yux+Oy
27 26 rneqi rantposyu,xty+Gx=ranxt,yux+Oy
28 21 27 eqtr3i ranyu,xty+Gx=ranxt,yux+Oy
29 28 a1i u𝒫BaseGt𝒫BaseGranyu,xty+Gx=ranxt,yux+Oy
30 29 mpoeq3ia u𝒫BaseG,t𝒫BaseGranyu,xty+Gx=u𝒫BaseG,t𝒫BaseGranxt,yux+Oy
31 30 tposmpo tposu𝒫BaseG,t𝒫BaseGranyu,xty+Gx=t𝒫BaseG,u𝒫BaseGranxt,yux+Oy
32 12 31 eqtrdi GVtpos˙=t𝒫BaseG,u𝒫BaseGranxt,yux+Oy
33 9 32 eqtr4id GVLSSumO=tpos˙
34 33 oveqd GVTLSSumOU=Ttpos˙U
35 ovtpos Ttpos˙U=U˙T
36 34 35 eqtrdi GVTLSSumOU=U˙T
37 eqid t𝒫BaseG,u𝒫BaseG=t𝒫BaseG,u𝒫BaseG
38 0ex V
39 eqidd t=Tu=U=
40 37 38 39 elovmpo xTt𝒫BaseG,u𝒫BaseGUT𝒫BaseGU𝒫BaseGx
41 40 simp3bi xTt𝒫BaseG,u𝒫BaseGUx
42 41 ssriv Tt𝒫BaseG,u𝒫BaseGU
43 ss0 Tt𝒫BaseG,u𝒫BaseGUTt𝒫BaseG,u𝒫BaseGU=
44 42 43 ax-mp Tt𝒫BaseG,u𝒫BaseGU=
45 elpwi t𝒫BaseGtBaseG
46 45 3ad2ant2 ¬GVt𝒫BaseGu𝒫BaseGtBaseG
47 fvprc ¬GVBaseG=
48 47 3ad2ant1 ¬GVt𝒫BaseGu𝒫BaseGBaseG=
49 46 48 sseqtrd ¬GVt𝒫BaseGu𝒫BaseGt
50 ss0 tt=
51 49 50 syl ¬GVt𝒫BaseGu𝒫BaseGt=
52 51 orcd ¬GVt𝒫BaseGu𝒫BaseGt=u=
53 0mpo0 t=u=xt,yux+Oy=
54 52 53 syl ¬GVt𝒫BaseGu𝒫BaseGxt,yux+Oy=
55 54 rneqd ¬GVt𝒫BaseGu𝒫BaseGranxt,yux+Oy=ran
56 rn0 ran=
57 55 56 eqtrdi ¬GVt𝒫BaseGu𝒫BaseGranxt,yux+Oy=
58 57 mpoeq3dva ¬GVt𝒫BaseG,u𝒫BaseGranxt,yux+Oy=t𝒫BaseG,u𝒫BaseG
59 9 58 eqtrid ¬GVLSSumO=t𝒫BaseG,u𝒫BaseG
60 59 oveqd ¬GVTLSSumOU=Tt𝒫BaseG,u𝒫BaseGU
61 fvprc ¬GVLSSumG=
62 2 61 eqtrid ¬GV˙=
63 62 oveqd ¬GVU˙T=UT
64 0ov UT=
65 63 64 eqtrdi ¬GVU˙T=
66 44 60 65 3eqtr4a ¬GVTLSSumOU=U˙T
67 36 66 pm2.61i TLSSumOU=U˙T