Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016) (Proof shortened by AV, 2-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppglsm.o | |
|
oppglsm.p | |
||
Assertion | oppglsm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppglsm.o | |
|
2 | oppglsm.p | |
|
3 | 1 | fvexi | |
4 | eqid | |
|
5 | 1 4 | oppgbas | |
6 | eqid | |
|
7 | eqid | |
|
8 | 5 6 7 | lsmfval | |
9 | 3 8 | ax-mp | |
10 | eqid | |
|
11 | 4 10 2 | lsmfval | |
12 | 11 | tposeqd | |
13 | eqid | |
|
14 | 13 | reldmmpo | |
15 | 13 | mpofun | |
16 | funforn | |
|
17 | 15 16 | mpbi | |
18 | tposfo2 | |
|
19 | 14 17 18 | mp2 | |
20 | forn | |
|
21 | 19 20 | ax-mp | |
22 | 10 1 6 | oppgplus | |
23 | 22 | eqcomi | |
24 | 23 | a1i | |
25 | 24 | mpoeq3ia | |
26 | 25 | tposmpo | |
27 | 26 | rneqi | |
28 | 21 27 | eqtr3i | |
29 | 28 | a1i | |
30 | 29 | mpoeq3ia | |
31 | 30 | tposmpo | |
32 | 12 31 | eqtrdi | |
33 | 9 32 | eqtr4id | |
34 | 33 | oveqd | |
35 | ovtpos | |
|
36 | 34 35 | eqtrdi | |
37 | eqid | |
|
38 | 0ex | |
|
39 | eqidd | |
|
40 | 37 38 39 | elovmpo | |
41 | 40 | simp3bi | |
42 | 41 | ssriv | |
43 | ss0 | |
|
44 | 42 43 | ax-mp | |
45 | elpwi | |
|
46 | 45 | 3ad2ant2 | |
47 | fvprc | |
|
48 | 47 | 3ad2ant1 | |
49 | 46 48 | sseqtrd | |
50 | ss0 | |
|
51 | 49 50 | syl | |
52 | 51 | orcd | |
53 | 0mpo0 | |
|
54 | 52 53 | syl | |
55 | 54 | rneqd | |
56 | rn0 | |
|
57 | 55 56 | eqtrdi | |
58 | 57 | mpoeq3dva | |
59 | 9 58 | eqtrid | |
60 | 59 | oveqd | |
61 | fvprc | |
|
62 | 2 61 | eqtrid | |
63 | 62 | oveqd | |
64 | 0ov | |
|
65 | 63 64 | eqtrdi | |
66 | 44 60 65 | 3eqtr4a | |
67 | 36 66 | pm2.61i | |