Description: The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opprqus.b | |
|
opprqus.o | |
||
opprqus.q | |
||
opprqus1r.r | |
||
opprqus1r.i | |
||
Assertion | opprqus1r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprqus.b | |
|
2 | opprqus.o | |
|
3 | opprqus.q | |
|
4 | opprqus1r.r | |
|
5 | opprqus1r.i | |
|
6 | eqid | |
|
7 | fvexd | |
|
8 | ovexd | |
|
9 | 5 | 2idllidld | |
10 | eqid | |
|
11 | 1 10 | lidlss | |
12 | 9 11 | syl | |
13 | 1 2 3 4 12 | opprqusbas | |
14 | 4 | ad2antrr | |
15 | 5 | ad2antrr | |
16 | eqid | |
|
17 | simpr | |
|
18 | eqid | |
|
19 | 18 16 | opprbas | |
20 | 17 19 | eleqtrrdi | |
21 | 20 | adantr | |
22 | simpr | |
|
23 | 22 19 | eleqtrrdi | |
24 | 23 | adantlr | |
25 | 1 2 3 14 15 16 21 24 | opprqusmulr | |
26 | 6 7 8 13 25 | urpropd | |