| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprqus.b |  | 
						
							| 2 |  | opprqus.o |  | 
						
							| 3 |  | opprqus.q |  | 
						
							| 4 |  | opprqus1r.r |  | 
						
							| 5 |  | opprqus1r.i |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | fvexd |  | 
						
							| 8 |  | ovexd |  | 
						
							| 9 | 5 | 2idllidld |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 10 | lidlss |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 | 1 2 3 4 12 | opprqusbas |  | 
						
							| 14 | 4 | ad2antrr |  | 
						
							| 15 | 5 | ad2antrr |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 16 | opprbas |  | 
						
							| 20 | 17 19 | eleqtrrdi |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 22 19 | eleqtrrdi |  | 
						
							| 24 | 23 | adantlr |  | 
						
							| 25 | 1 2 3 14 15 16 21 24 | opprqusmulr |  | 
						
							| 26 | 6 7 8 13 25 | urpropd |  |