Metamath Proof Explorer


Theorem opprqus1r

Description: The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses opprqus.b B=BaseR
opprqus.o O=opprR
opprqus.q Q=R/𝑠R~QGI
opprqus1r.r φRRing
opprqus1r.i φI2IdealR
Assertion opprqus1r φ1opprQ=1O/𝑠O~QGI

Proof

Step Hyp Ref Expression
1 opprqus.b B=BaseR
2 opprqus.o O=opprR
3 opprqus.q Q=R/𝑠R~QGI
4 opprqus1r.r φRRing
5 opprqus1r.i φI2IdealR
6 eqid BaseopprQ=BaseopprQ
7 fvexd φopprQV
8 ovexd φO/𝑠O~QGIV
9 5 2idllidld φILIdealR
10 eqid LIdealR=LIdealR
11 1 10 lidlss ILIdealRIB
12 9 11 syl φIB
13 1 2 3 4 12 opprqusbas φBaseopprQ=BaseO/𝑠O~QGI
14 4 ad2antrr φxBaseopprQyBaseopprQRRing
15 5 ad2antrr φxBaseopprQyBaseopprQI2IdealR
16 eqid BaseQ=BaseQ
17 simpr φxBaseopprQxBaseopprQ
18 eqid opprQ=opprQ
19 18 16 opprbas BaseQ=BaseopprQ
20 17 19 eleqtrrdi φxBaseopprQxBaseQ
21 20 adantr φxBaseopprQyBaseopprQxBaseQ
22 simpr φyBaseopprQyBaseopprQ
23 22 19 eleqtrrdi φyBaseopprQyBaseQ
24 23 adantlr φxBaseopprQyBaseopprQyBaseQ
25 1 2 3 14 15 16 21 24 opprqusmulr φxBaseopprQyBaseopprQxopprQy=xO/𝑠O~QGIy
26 6 7 8 13 25 urpropd φ1opprQ=1O/𝑠O~QGI