Metamath Proof Explorer


Theorem oprabex3

Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004)

Ref Expression
Hypotheses oprabex3.1 HV
oprabex3.2 F=xyz|xH×HyH×Hwvufx=wvy=ufz=R
Assertion oprabex3 FV

Proof

Step Hyp Ref Expression
1 oprabex3.1 HV
2 oprabex3.2 F=xyz|xH×HyH×Hwvufx=wvy=ufz=R
3 1 1 xpex H×HV
4 moeq *zz=R
5 4 mosubop *zufy=ufz=R
6 5 mosubop *zwvx=wvufy=ufz=R
7 anass x=wvy=ufz=Rx=wvy=ufz=R
8 7 2exbii ufx=wvy=ufz=Rufx=wvy=ufz=R
9 19.42vv ufx=wvy=ufz=Rx=wvufy=ufz=R
10 8 9 bitri ufx=wvy=ufz=Rx=wvufy=ufz=R
11 10 2exbii wvufx=wvy=ufz=Rwvx=wvufy=ufz=R
12 11 mobii *zwvufx=wvy=ufz=R*zwvx=wvufy=ufz=R
13 6 12 mpbir *zwvufx=wvy=ufz=R
14 13 a1i xH×HyH×H*zwvufx=wvy=ufz=R
15 3 3 14 2 oprabex FV