Description: If a pair and a class are in a relationship given by a class abstraction of a collection of nested ordered pairs, the involved classes are sets. (Contributed by Alexander van der Vekens, 8-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | oprabv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reloprab | |
|
2 | 1 | brrelex12i | |
3 | df-br | |
|
4 | opex | |
|
5 | nfcv | |
|
6 | 5 | nfeq1 | |
7 | nfv | |
|
8 | 6 7 | nfan | |
9 | 8 | nfex | |
10 | 9 | nfex | |
11 | nfcv | |
|
12 | 11 | nfeq1 | |
13 | nfsbc1v | |
|
14 | 12 13 | nfan | |
15 | 14 | nfex | |
16 | 15 | nfex | |
17 | eqeq1 | |
|
18 | 17 | anbi1d | |
19 | 18 | 2exbidv | |
20 | sbceq1a | |
|
21 | 20 | anbi2d | |
22 | 21 | 2exbidv | |
23 | 10 16 19 22 | opelopabgf | |
24 | 4 23 | mpan | |
25 | eqcom | |
|
26 | vex | |
|
27 | vex | |
|
28 | 26 27 | opth | |
29 | 25 28 | bitri | |
30 | eqvisset | |
|
31 | eqvisset | |
|
32 | 30 31 | anim12i | |
33 | 29 32 | sylbi | |
34 | 33 | adantr | |
35 | 34 | exlimivv | |
36 | 35 | anim1i | |
37 | df-3an | |
|
38 | 36 37 | sylibr | |
39 | 38 | expcom | |
40 | 24 39 | sylbid | |
41 | 40 | com12 | |
42 | dfoprab2 | |
|
43 | 41 42 | eleq2s | |
44 | 3 43 | sylbi | |
45 | 44 | com12 | |
46 | 45 | adantl | |
47 | 2 46 | mpcom | |