Metamath Proof Explorer


Theorem oprabv

Description: If a pair and a class are in a relationship given by a class abstraction of a collection of nested ordered pairs, the involved classes are sets. (Contributed by Alexander van der Vekens, 8-Jul-2018)

Ref Expression
Assertion oprabv XYxyz|φZXVYVZV

Proof

Step Hyp Ref Expression
1 reloprab Relxyz|φ
2 1 brrelex12i XYxyz|φZXYVZV
3 df-br XYxyz|φZXYZxyz|φ
4 opex XYV
5 nfcv _wXY
6 5 nfeq1 wXY=xy
7 nfv wφ
8 6 7 nfan wXY=xyφ
9 8 nfex wyXY=xyφ
10 9 nfex wxyXY=xyφ
11 nfcv _zXY
12 11 nfeq1 zXY=xy
13 nfsbc1v z[˙Z/z]˙φ
14 12 13 nfan zXY=xy[˙Z/z]˙φ
15 14 nfex zyXY=xy[˙Z/z]˙φ
16 15 nfex zxyXY=xy[˙Z/z]˙φ
17 eqeq1 w=XYw=xyXY=xy
18 17 anbi1d w=XYw=xyφXY=xyφ
19 18 2exbidv w=XYxyw=xyφxyXY=xyφ
20 sbceq1a z=Zφ[˙Z/z]˙φ
21 20 anbi2d z=ZXY=xyφXY=xy[˙Z/z]˙φ
22 21 2exbidv z=ZxyXY=xyφxyXY=xy[˙Z/z]˙φ
23 10 16 19 22 opelopabgf XYVZVXYZwz|xyw=xyφxyXY=xy[˙Z/z]˙φ
24 4 23 mpan ZVXYZwz|xyw=xyφxyXY=xy[˙Z/z]˙φ
25 eqcom XY=xyxy=XY
26 vex xV
27 vex yV
28 26 27 opth xy=XYx=Xy=Y
29 25 28 bitri XY=xyx=Xy=Y
30 eqvisset x=XXV
31 eqvisset y=YYV
32 30 31 anim12i x=Xy=YXVYV
33 29 32 sylbi XY=xyXVYV
34 33 adantr XY=xy[˙Z/z]˙φXVYV
35 34 exlimivv xyXY=xy[˙Z/z]˙φXVYV
36 35 anim1i xyXY=xy[˙Z/z]˙φZVXVYVZV
37 df-3an XVYVZVXVYVZV
38 36 37 sylibr xyXY=xy[˙Z/z]˙φZVXVYVZV
39 38 expcom ZVxyXY=xy[˙Z/z]˙φXVYVZV
40 24 39 sylbid ZVXYZwz|xyw=xyφXVYVZV
41 40 com12 XYZwz|xyw=xyφZVXVYVZV
42 dfoprab2 xyz|φ=wz|xyw=xyφ
43 41 42 eleq2s XYZxyz|φZVXVYVZV
44 3 43 sylbi XYxyz|φZZVXVYVZV
45 44 com12 ZVXYxyz|φZXVYVZV
46 45 adantl XYVZVXYxyz|φZXVYVZV
47 2 46 mpcom XYxyz|φZXVYVZV