Description: Restriction to the second part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010) (Proof shortened by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oprpiece1.1 | |
|
oprpiece1.2 | |
||
oprpiece1.3 | |
||
oprpiece1.4 | |
||
oprpiece1.5 | |
||
oprpiece1.6 | |
||
oprpiece1.7 | |
||
oprpiece1.9 | |
||
oprpiece1.10 | |
||
oprpiece1.11 | |
||
oprpiece1.12 | |
||
Assertion | oprpiece1res2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprpiece1.1 | |
|
2 | oprpiece1.2 | |
|
3 | oprpiece1.3 | |
|
4 | oprpiece1.4 | |
|
5 | oprpiece1.5 | |
|
6 | oprpiece1.6 | |
|
7 | oprpiece1.7 | |
|
8 | oprpiece1.9 | |
|
9 | oprpiece1.10 | |
|
10 | oprpiece1.11 | |
|
11 | oprpiece1.12 | |
|
12 | 1 | rexri | |
13 | 2 | rexri | |
14 | ubicc2 | |
|
15 | 12 13 3 14 | mp3an | |
16 | iccss2 | |
|
17 | 6 15 16 | mp2an | |
18 | ssid | |
|
19 | resmpo | |
|
20 | 17 18 19 | mp2an | |
21 | 7 | reseq1i | |
22 | 10 | ad2antlr | |
23 | simpr | |
|
24 | 1 2 | elicc2i | |
25 | 24 | simp1bi | |
26 | 6 25 | ax-mp | |
27 | 26 2 | elicc2i | |
28 | 27 | simp2bi | |
29 | 28 | ad2antrr | |
30 | 27 | simp1bi | |
31 | 30 | ad2antrr | |
32 | letri3 | |
|
33 | 31 26 32 | sylancl | |
34 | 23 29 33 | mpbir2and | |
35 | 34 8 | syl | |
36 | 34 9 | syl | |
37 | 22 35 36 | 3eqtr4d | |
38 | eqidd | |
|
39 | 37 38 | ifeqda | |
40 | 39 | mpoeq3ia | |
41 | 11 40 | eqtr4i | |
42 | 20 21 41 | 3eqtr4i | |