Metamath Proof Explorer


Theorem oprpiece1res2

Description: Restriction to the second part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010) (Proof shortened by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses oprpiece1.1 A
oprpiece1.2 B
oprpiece1.3 AB
oprpiece1.4 RV
oprpiece1.5 SV
oprpiece1.6 KAB
oprpiece1.7 F=xAB,yCifxKRS
oprpiece1.9 x=KR=P
oprpiece1.10 x=KS=Q
oprpiece1.11 yCP=Q
oprpiece1.12 G=xKB,yCS
Assertion oprpiece1res2 FKB×C=G

Proof

Step Hyp Ref Expression
1 oprpiece1.1 A
2 oprpiece1.2 B
3 oprpiece1.3 AB
4 oprpiece1.4 RV
5 oprpiece1.5 SV
6 oprpiece1.6 KAB
7 oprpiece1.7 F=xAB,yCifxKRS
8 oprpiece1.9 x=KR=P
9 oprpiece1.10 x=KS=Q
10 oprpiece1.11 yCP=Q
11 oprpiece1.12 G=xKB,yCS
12 1 rexri A*
13 2 rexri B*
14 ubicc2 A*B*ABBAB
15 12 13 3 14 mp3an BAB
16 iccss2 KABBABKBAB
17 6 15 16 mp2an KBAB
18 ssid CC
19 resmpo KBABCCxAB,yCifxKRSKB×C=xKB,yCifxKRS
20 17 18 19 mp2an xAB,yCifxKRSKB×C=xKB,yCifxKRS
21 7 reseq1i FKB×C=xAB,yCifxKRSKB×C
22 10 ad2antlr xKByCxKP=Q
23 simpr xKByCxKxK
24 1 2 elicc2i KABKAKKB
25 24 simp1bi KABK
26 6 25 ax-mp K
27 26 2 elicc2i xKBxKxxB
28 27 simp2bi xKBKx
29 28 ad2antrr xKByCxKKx
30 27 simp1bi xKBx
31 30 ad2antrr xKByCxKx
32 letri3 xKx=KxKKx
33 31 26 32 sylancl xKByCxKx=KxKKx
34 23 29 33 mpbir2and xKByCxKx=K
35 34 8 syl xKByCxKR=P
36 34 9 syl xKByCxKS=Q
37 22 35 36 3eqtr4d xKByCxKR=S
38 eqidd xKByC¬xKS=S
39 37 38 ifeqda xKByCifxKRS=S
40 39 mpoeq3ia xKB,yCifxKRS=xKB,yCS
41 11 40 eqtr4i G=xKB,yCifxKRS
42 20 21 41 3eqtr4i FKB×C=G