| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opthhausdorff0.a |  | 
						
							| 2 |  | opthhausdorff0.b |  | 
						
							| 3 |  | opthhausdorff0.c |  | 
						
							| 4 |  | opthhausdorff0.d |  | 
						
							| 5 |  | opthhausdorff0.1 |  | 
						
							| 6 |  | opthhausdorff0.2 |  | 
						
							| 7 |  | opthhausdorff0.3 |  | 
						
							| 8 |  | prex |  | 
						
							| 9 |  | prex |  | 
						
							| 10 |  | prex |  | 
						
							| 11 |  | prex |  | 
						
							| 12 | 8 9 10 11 | preq12b |  | 
						
							| 13 | 1 3 | preqr1 |  | 
						
							| 14 | 2 4 | preqr1 |  | 
						
							| 15 | 13 14 | anim12i |  | 
						
							| 16 | 1 5 4 6 | preq12b |  | 
						
							| 17 |  | eqneqall |  | 
						
							| 18 | 7 17 | mpi |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 2 6 3 5 | preq12b |  | 
						
							| 21 |  | eqneqall |  | 
						
							| 22 | 7 21 | mpi |  | 
						
							| 23 | 22 | eqcoms |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 |  | simpl |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 | 25 26 | sylan9eqr |  | 
						
							| 28 |  | simpl |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 28 29 | sylan9eq |  | 
						
							| 31 | 27 30 | jca |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 24 32 | jaoi |  | 
						
							| 34 | 20 33 | sylbi |  | 
						
							| 35 | 34 | com12 |  | 
						
							| 36 | 19 35 | jaoi |  | 
						
							| 37 | 16 36 | sylbi |  | 
						
							| 38 | 37 | imp |  | 
						
							| 39 | 15 38 | jaoi |  | 
						
							| 40 | 12 39 | sylbi |  | 
						
							| 41 |  | preq1 |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 |  | preq1 |  | 
						
							| 44 | 43 | adantl |  | 
						
							| 45 | 42 44 | preq12d |  | 
						
							| 46 | 40 45 | impbii |  |