Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: <. A , B >._H = { { A , O } , { B , T } } . Hausdorff used 1 and 2 instead of O and T , but actually, any two different fixed sets will do (e.g., O = (/) and T = { (/) } , see 0nep0 ). Furthermore, Hausdorff demanded that O and T are both different from A as well as B , which is actually not necessary if all involved classes exist as sets (i.e. are not proper classes), in contrast to opthhausdorff . See df-op for other ordered pair definitions. (Contributed by AV, 12-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opthhausdorff0.a | |
|
opthhausdorff0.b | |
||
opthhausdorff0.c | |
||
opthhausdorff0.d | |
||
opthhausdorff0.1 | |
||
opthhausdorff0.2 | |
||
opthhausdorff0.3 | |
||
Assertion | opthhausdorff0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthhausdorff0.a | |
|
2 | opthhausdorff0.b | |
|
3 | opthhausdorff0.c | |
|
4 | opthhausdorff0.d | |
|
5 | opthhausdorff0.1 | |
|
6 | opthhausdorff0.2 | |
|
7 | opthhausdorff0.3 | |
|
8 | prex | |
|
9 | prex | |
|
10 | prex | |
|
11 | prex | |
|
12 | 8 9 10 11 | preq12b | |
13 | 1 3 | preqr1 | |
14 | 2 4 | preqr1 | |
15 | 13 14 | anim12i | |
16 | 1 5 4 6 | preq12b | |
17 | eqneqall | |
|
18 | 7 17 | mpi | |
19 | 18 | adantl | |
20 | 2 6 3 5 | preq12b | |
21 | eqneqall | |
|
22 | 7 21 | mpi | |
23 | 22 | eqcoms | |
24 | 23 | adantl | |
25 | simpl | |
|
26 | simpr | |
|
27 | 25 26 | sylan9eqr | |
28 | simpl | |
|
29 | simpr | |
|
30 | 28 29 | sylan9eq | |
31 | 27 30 | jca | |
32 | 31 | ex | |
33 | 24 32 | jaoi | |
34 | 20 33 | sylbi | |
35 | 34 | com12 | |
36 | 19 35 | jaoi | |
37 | 16 36 | sylbi | |
38 | 37 | imp | |
39 | 15 38 | jaoi | |
40 | 12 39 | sylbi | |
41 | preq1 | |
|
42 | 41 | adantr | |
43 | preq1 | |
|
44 | 43 | adantl | |
45 | 42 44 | preq12d | |
46 | 40 45 | impbii | |