Metamath Proof Explorer


Theorem orbitcl

Description: The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Assertion orbitcl B rec F A ω F B rec F A ω

Proof

Step Hyp Ref Expression
1 frfnom rec F A ω Fn ω
2 fvelrnb rec F A ω Fn ω B ran rec F A ω x ω rec F A ω x = B
3 1 2 ax-mp B ran rec F A ω x ω rec F A ω x = B
4 frsuc x ω rec F A ω suc x = F rec F A ω x
5 peano2 x ω suc x ω
6 fnfvelrn rec F A ω Fn ω suc x ω rec F A ω suc x ran rec F A ω
7 1 5 6 sylancr x ω rec F A ω suc x ran rec F A ω
8 4 7 eqeltrrd x ω F rec F A ω x ran rec F A ω
9 fveq2 rec F A ω x = B F rec F A ω x = F B
10 9 eleq1d rec F A ω x = B F rec F A ω x ran rec F A ω F B ran rec F A ω
11 8 10 syl5ibcom x ω rec F A ω x = B F B ran rec F A ω
12 11 rexlimiv x ω rec F A ω x = B F B ran rec F A ω
13 3 12 sylbi B ran rec F A ω F B ran rec F A ω
14 df-ima rec F A ω = ran rec F A ω
15 13 14 eleq2s B rec F A ω F B ran rec F A ω
16 15 14 eleqtrrdi B rec F A ω F B rec F A ω