Metamath Proof Explorer


Theorem ordsucuniel

Description: Given an element A of the union of an ordinal B , suc A is an element of B itself. (Contributed by Scott Fenton, 28-Mar-2012) (Proof shortened by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion ordsucuniel OrdBABsucAB

Proof

Step Hyp Ref Expression
1 orduni OrdBOrdB
2 ordelord OrdBABOrdA
3 2 ex OrdBABOrdA
4 1 3 syl OrdBABOrdA
5 ordelord OrdBsucABOrdsucA
6 ordsuc OrdAOrdsucA
7 5 6 sylibr OrdBsucABOrdA
8 7 ex OrdBsucABOrdA
9 ordsson OrdBBOn
10 ordunisssuc BOnOrdABABsucA
11 9 10 sylan OrdBOrdABABsucA
12 ordtri1 OrdBOrdABA¬AB
13 1 12 sylan OrdBOrdABA¬AB
14 ordtri1 OrdBOrdsucABsucA¬sucAB
15 6 14 sylan2b OrdBOrdABsucA¬sucAB
16 11 13 15 3bitr3d OrdBOrdA¬AB¬sucAB
17 16 con4bid OrdBOrdAABsucAB
18 17 ex OrdBOrdAABsucAB
19 4 8 18 pm5.21ndd OrdBABsucAB