Description: Given an element A of the union of an ordinal B , suc A is an element of B itself. (Contributed by Scott Fenton, 28-Mar-2012) (Proof shortened by Mario Carneiro, 29-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ordsucuniel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduni | |
|
2 | ordelord | |
|
3 | 2 | ex | |
4 | 1 3 | syl | |
5 | ordelord | |
|
6 | ordsuc | |
|
7 | 5 6 | sylibr | |
8 | 7 | ex | |
9 | ordsson | |
|
10 | ordunisssuc | |
|
11 | 9 10 | sylan | |
12 | ordtri1 | |
|
13 | 1 12 | sylan | |
14 | ordtri1 | |
|
15 | 6 14 | sylan2b | |
16 | 11 13 15 | 3bitr3d | |
17 | 16 | con4bid | |
18 | 17 | ex | |
19 | 4 8 18 | pm5.21ndd | |