Description: The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ordthaus | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | ordthauslem | |
3 | 1 | ordthauslem | |
4 | necom | |
|
5 | 3ancoma | |
|
6 | incom | |
|
7 | 6 | eqeq1i | |
8 | 7 | 3anbi3i | |
9 | 5 8 | bitri | |
10 | 9 | 2rexbii | |
11 | rexcom | |
|
12 | 10 11 | bitri | |
13 | 4 12 | imbi12i | |
14 | 3 13 | imbitrdi | |
15 | 14 | 3com23 | |
16 | 1 | tsrlin | |
17 | 2 15 16 | mpjaod | |
18 | 17 | 3expb | |
19 | 18 | ralrimivva | |
20 | 1 | ordttopon | |
21 | ishaus2 | |
|
22 | 20 21 | syl | |
23 | 19 22 | mpbird | |