Metamath Proof Explorer


Theorem ordtri2or3

Description: A consequence of total ordering for ordinal classes. Similar to ordtri2or2 . (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion ordtri2or3 OrdAOrdBA=ABB=AB

Proof

Step Hyp Ref Expression
1 ordtri2or2 OrdAOrdBABBA
2 dfss ABA=AB
3 sseqin2 BAAB=B
4 eqcom AB=BB=AB
5 3 4 bitri BAB=AB
6 2 5 orbi12i ABBAA=ABB=AB
7 1 6 sylib OrdAOrdBA=ABB=AB