Metamath Proof Explorer


Theorem osumcllem7N

Description: Lemma for osumclN . (Contributed by NM, 24-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l ˙=K
osumcllem.j ˙=joinK
osumcllem.a A=AtomsK
osumcllem.p +˙=+𝑃K
osumcllem.o ˙=𝑃K
osumcllem.c C=PSubClK
osumcllem.m M=X+˙p
osumcllem.u U=˙˙X+˙Y
Assertion osumcllem7N KHLXAYAX˙YXpAqYMpX+˙Y

Proof

Step Hyp Ref Expression
1 osumcllem.l ˙=K
2 osumcllem.j ˙=joinK
3 osumcllem.a A=AtomsK
4 osumcllem.p +˙=+𝑃K
5 osumcllem.o ˙=𝑃K
6 osumcllem.c C=PSubClK
7 osumcllem.m M=X+˙p
8 osumcllem.u U=˙˙X+˙Y
9 simp11 KHLXAYAX˙YXpAqYMKHL
10 9 hllatd KHLXAYAX˙YXpAqYMKLat
11 simp12 KHLXAYAX˙YXpAqYMXA
12 simp23 KHLXAYAX˙YXpAqYMpA
13 simp22 KHLXAYAX˙YXpAqYMX
14 inss2 YMM
15 14 sseli qYMqM
16 15 3ad2ant3 KHLXAYAX˙YXpAqYMqM
17 16 7 eleqtrdi KHLXAYAX˙YXpAqYMqX+˙p
18 1 2 3 4 elpaddatiN KLatXApAXqX+˙prXq˙r˙p
19 10 11 12 13 17 18 syl32anc KHLXAYAX˙YXpAqYMrXq˙r˙p
20 simp11 KHLXAYAX˙YXpAqYMrXq˙r˙pKHLXAYA
21 simp121 KHLXAYAX˙YXpAqYMrXq˙r˙pX˙Y
22 simp123 KHLXAYAX˙YXpAqYMrXq˙r˙ppA
23 simp2 KHLXAYAX˙YXpAqYMrXq˙r˙prX
24 inss1 YMY
25 simp13 KHLXAYAX˙YXpAqYMrXq˙r˙pqYM
26 24 25 sselid KHLXAYAX˙YXpAqYMrXq˙r˙pqY
27 simp3 KHLXAYAX˙YXpAqYMrXq˙r˙pq˙r˙p
28 1 2 3 4 5 6 7 8 osumcllem6N KHLXAYAX˙YpArXqYq˙r˙ppX+˙Y
29 20 21 22 23 26 27 28 syl123anc KHLXAYAX˙YXpAqYMrXq˙r˙ppX+˙Y
30 29 rexlimdv3a KHLXAYAX˙YXpAqYMrXq˙r˙ppX+˙Y
31 19 30 mpd KHLXAYAX˙YXpAqYMpX+˙Y