Metamath Proof Explorer


Theorem ovmpodf

Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses ovmpodf.1 φAC
ovmpodf.2 φx=ABD
ovmpodf.3 φx=Ay=BRV
ovmpodf.4 φx=Ay=BAFB=Rψ
ovmpodf.5 _xF
ovmpodf.6 xψ
ovmpodf.7 _yF
ovmpodf.8 yψ
Assertion ovmpodf φF=xC,yDRψ

Proof

Step Hyp Ref Expression
1 ovmpodf.1 φAC
2 ovmpodf.2 φx=ABD
3 ovmpodf.3 φx=Ay=BRV
4 ovmpodf.4 φx=Ay=BAFB=Rψ
5 ovmpodf.5 _xF
6 ovmpodf.6 xψ
7 ovmpodf.7 _yF
8 ovmpodf.8 yψ
9 nfv xφ
10 nfmpo1 _xxC,yDR
11 5 10 nfeq xF=xC,yDR
12 11 6 nfim xF=xC,yDRψ
13 1 elexd φAV
14 isset AVxx=A
15 13 14 sylib φxx=A
16 nfv yφx=A
17 nfmpo2 _yxC,yDR
18 7 17 nfeq yF=xC,yDR
19 18 8 nfim yF=xC,yDRψ
20 2 elexd φx=ABV
21 isset BVyy=B
22 20 21 sylib φx=Ayy=B
23 oveq F=xC,yDRAFB=AxC,yDRB
24 simprl φx=Ay=Bx=A
25 simprr φx=Ay=By=B
26 24 25 oveq12d φx=Ay=BxxC,yDRy=AxC,yDRB
27 1 adantr φx=Ay=BAC
28 24 27 eqeltrd φx=Ay=BxC
29 2 adantrr φx=Ay=BBD
30 25 29 eqeltrd φx=Ay=ByD
31 eqid xC,yDR=xC,yDR
32 31 ovmpt4g xCyDRVxxC,yDRy=R
33 28 30 3 32 syl3anc φx=Ay=BxxC,yDRy=R
34 26 33 eqtr3d φx=Ay=BAxC,yDRB=R
35 34 eqeq2d φx=Ay=BAFB=AxC,yDRBAFB=R
36 35 4 sylbid φx=Ay=BAFB=AxC,yDRBψ
37 23 36 syl5 φx=Ay=BF=xC,yDRψ
38 37 expr φx=Ay=BF=xC,yDRψ
39 16 19 22 38 exlimimdd φx=AF=xC,yDRψ
40 9 12 15 39 exlimdd φF=xC,yDRψ