Metamath Proof Explorer


Theorem ovmpt3rab1

Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)

Ref Expression
Hypotheses ovmpt3rab1.o O=xV,yVzMaN|φ
ovmpt3rab1.m x=Xy=YM=K
ovmpt3rab1.n x=Xy=YN=L
ovmpt3rab1.p x=Xy=Yφψ
ovmpt3rab1.x xψ
ovmpt3rab1.y yψ
Assertion ovmpt3rab1 XVYWKUXOY=zKaL|ψ

Proof

Step Hyp Ref Expression
1 ovmpt3rab1.o O=xV,yVzMaN|φ
2 ovmpt3rab1.m x=Xy=YM=K
3 ovmpt3rab1.n x=Xy=YN=L
4 ovmpt3rab1.p x=Xy=Yφψ
5 ovmpt3rab1.x xψ
6 ovmpt3rab1.y yψ
7 1 a1i XVYWKUO=xV,yVzMaN|φ
8 3 4 rabeqbidv x=Xy=YaN|φ=aL|ψ
9 2 8 mpteq12dv x=Xy=YzMaN|φ=zKaL|ψ
10 9 adantl XVYWKUx=Xy=YzMaN|φ=zKaL|ψ
11 eqidd XVYWKUx=XV=V
12 elex XVXV
13 12 3ad2ant1 XVYWKUXV
14 elex YWYV
15 14 3ad2ant2 XVYWKUYV
16 mptexg KUzKaL|ψV
17 16 3ad2ant3 XVYWKUzKaL|ψV
18 nfv xXVYWKU
19 nfv yXVYWKU
20 nfcv _yX
21 nfcv _xY
22 nfcv _xK
23 nfcv _xL
24 5 23 nfrabw _xaL|ψ
25 22 24 nfmpt _xzKaL|ψ
26 nfcv _yK
27 nfcv _yL
28 6 27 nfrabw _yaL|ψ
29 26 28 nfmpt _yzKaL|ψ
30 7 10 11 13 15 17 18 19 20 21 25 29 ovmpodxf XVYWKUXOY=zKaL|ψ