Metamath Proof Explorer


Theorem pclss2polN

Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclss2pol.a A=AtomsK
pclss2pol.o ˙=𝑃K
pclss2pol.c U=PClK
Assertion pclss2polN KHLXAUX˙˙X

Proof

Step Hyp Ref Expression
1 pclss2pol.a A=AtomsK
2 pclss2pol.o ˙=𝑃K
3 pclss2pol.c U=PClK
4 simpl KHLXAKHL
5 1 2 2polssN KHLXAX˙˙X
6 1 2 polssatN KHLXA˙XA
7 1 2 polssatN KHL˙XA˙˙XA
8 6 7 syldan KHLXA˙˙XA
9 1 3 pclssN KHLX˙˙X˙˙XAUXU˙˙X
10 4 5 8 9 syl3anc KHLXAUXU˙˙X
11 eqid PSubSpK=PSubSpK
12 1 11 2 polsubN KHL˙XA˙˙XPSubSpK
13 6 12 syldan KHLXA˙˙XPSubSpK
14 11 3 pclidN KHL˙˙XPSubSpKU˙˙X=˙˙X
15 13 14 syldan KHLXAU˙˙X=˙˙X
16 10 15 sseqtrd KHLXAUX˙˙X