Metamath Proof Explorer


Theorem pell14qrexpcl

Description: Positive Pell solutions are closed under integer powers. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrexpcl DAPell14QRDBABPell14QRD

Proof

Step Hyp Ref Expression
1 elznn0 BBB0B0
2 simplll DAPell14QRDBB0D
3 simpllr DAPell14QRDBB0APell14QRD
4 simpr DAPell14QRDBB0B0
5 pell14qrexpclnn0 DAPell14QRDB0ABPell14QRD
6 2 3 4 5 syl3anc DAPell14QRDBB0ABPell14QRD
7 pell14qrre DAPell14QRDA
8 7 recnd DAPell14QRDA
9 8 ad2antrr DAPell14QRDBB0A
10 simplr DAPell14QRDBB0B
11 10 recnd DAPell14QRDBB0B
12 simpr DAPell14QRDBB0B0
13 expneg2 ABB0AB=1AB
14 9 11 12 13 syl3anc DAPell14QRDBB0AB=1AB
15 simplll DAPell14QRDBB0D
16 simpllr DAPell14QRDBB0APell14QRD
17 pell14qrexpclnn0 DAPell14QRDB0ABPell14QRD
18 15 16 12 17 syl3anc DAPell14QRDBB0ABPell14QRD
19 pell14qrreccl DABPell14QRD1ABPell14QRD
20 15 18 19 syl2anc DAPell14QRDBB01ABPell14QRD
21 14 20 eqeltrd DAPell14QRDBB0ABPell14QRD
22 6 21 jaodan DAPell14QRDBB0B0ABPell14QRD
23 22 expl DAPell14QRDBB0B0ABPell14QRD
24 1 23 biimtrid DAPell14QRDBABPell14QRD
25 24 3impia DAPell14QRDBABPell14QRD