Description: Lemma for pell14qrexpcl . (Contributed by Stefan O'Rear, 18-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pell14qrexpclnn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eleq1d | |
3 | 2 | imbi2d | |
4 | oveq2 | |
|
5 | 4 | eleq1d | |
6 | 5 | imbi2d | |
7 | oveq2 | |
|
8 | 7 | eleq1d | |
9 | 8 | imbi2d | |
10 | oveq2 | |
|
11 | 10 | eleq1d | |
12 | 11 | imbi2d | |
13 | pell14qrre | |
|
14 | 13 | recnd | |
15 | 14 | exp0d | |
16 | pell14qrne0 | |
|
17 | 14 16 | dividd | |
18 | 15 17 | eqtr4d | |
19 | pell14qrdivcl | |
|
20 | 19 | 3anidm23 | |
21 | 18 20 | eqeltrd | |
22 | 14 | 3ad2ant2 | |
23 | simp1 | |
|
24 | 22 23 | expp1d | |
25 | simp2l | |
|
26 | simp3 | |
|
27 | simp2r | |
|
28 | pell14qrmulcl | |
|
29 | 25 26 27 28 | syl3anc | |
30 | 24 29 | eqeltrd | |
31 | 30 | 3exp | |
32 | 31 | a2d | |
33 | 3 6 9 12 21 32 | nn0ind | |
34 | 33 | expdcom | |
35 | 34 | 3imp | |