Metamath Proof Explorer


Theorem pell1qrval

Description: Value of the set of first-quadrant Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell1qrval DPell1QRD=y|z0w0y=z+Dwz2Dw2=1

Proof

Step Hyp Ref Expression
1 fveq2 a=Da=D
2 1 oveq1d a=Daw=Dw
3 2 oveq2d a=Dz+aw=z+Dw
4 3 eqeq2d a=Dy=z+awy=z+Dw
5 oveq1 a=Daw2=Dw2
6 5 oveq2d a=Dz2aw2=z2Dw2
7 6 eqeq1d a=Dz2aw2=1z2Dw2=1
8 4 7 anbi12d a=Dy=z+awz2aw2=1y=z+Dwz2Dw2=1
9 8 2rexbidv a=Dz0w0y=z+awz2aw2=1z0w0y=z+Dwz2Dw2=1
10 9 rabbidv a=Dy|z0w0y=z+awz2aw2=1=y|z0w0y=z+Dwz2Dw2=1
11 df-pell1qr Pell1QR=ay|z0w0y=z+awz2aw2=1
12 reex V
13 12 rabex y|z0w0y=z+Dwz2Dw2=1V
14 10 11 13 fvmpt DPell1QRD=y|z0w0y=z+Dwz2Dw2=1