Metamath Proof Explorer


Theorem permaxun

Description: The Axiom of Union ax-un holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 F : V 1-1 onto V
permmodel.2 R = F -1 E
Assertion permaxun y z w z R w w R x z R y

Proof

Step Hyp Ref Expression
1 permmodel.1 F : V 1-1 onto V
2 permmodel.2 R = F -1 E
3 fvex F -1 F F x V
4 breq2 y = F -1 F F x z R y z R F -1 F F x
5 4 imbi2d y = F -1 F F x w z R w w R x z R y w z R w w R x z R F -1 F F x
6 5 albidv y = F -1 F F x z w z R w w R x z R y z w z R w w R x z R F -1 F F x
7 vex z V
8 vex w V
9 1 2 7 8 brpermmodel z R w z F w
10 vex x V
11 1 2 8 10 brpermmodel w R x w F x
12 f1ofn F : V 1-1 onto V F Fn V
13 1 12 ax-mp F Fn V
14 ssv F x V
15 fnfvima F Fn V F x V w F x F w F F x
16 13 14 15 mp3an12 w F x F w F F x
17 elunii z F w F w F F x z F F x
18 16 17 sylan2 z F w w F x z F F x
19 9 11 18 syl2anb z R w w R x z F F x
20 f1ofun F : V 1-1 onto V Fun F
21 1 20 ax-mp Fun F
22 fvex F x V
23 22 funimaex Fun F F F x V
24 21 23 ax-mp F F x V
25 24 uniex F F x V
26 1 2 7 25 brpermmodelcnv z R F -1 F F x z F F x
27 19 26 sylibr z R w w R x z R F -1 F F x
28 27 exlimiv w z R w w R x z R F -1 F F x
29 28 ax-gen z w z R w w R x z R F -1 F F x
30 3 6 29 ceqsexv2d y z w z R w w R x z R y