Metamath Proof Explorer


Theorem perpdrag

Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
perpdrag.1 φAD
perpdrag.2 φBD
perpdrag.3 φCP
perpdrag.4 φD𝒢GBLC
Assertion perpdrag φ⟨“ABC”⟩𝒢G

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 perpdrag.1 φAD
7 perpdrag.2 φBD
8 perpdrag.3 φCP
9 perpdrag.4 φD𝒢GBLC
10 5 ad2antrr φxDAxG𝒢Tarski
11 9 ad2antrr φxDAxD𝒢GBLC
12 4 10 11 perpln1 φxDAxDranL
13 6 ad2antrr φxDAxAD
14 1 4 3 10 12 13 tglnpt φxDAxAP
15 simplr φxDAxxD
16 1 4 3 10 12 15 tglnpt φxDAxxP
17 7 ad2antrr φxDAxBD
18 simpr φxDAxAx
19 1 3 4 10 14 16 18 18 12 13 15 tglinethru φxDAxD=ALx
20 17 19 eleqtrd φxDAxBALx
21 8 ad2antrr φxDAxCP
22 19 11 eqbrtrrd φxDAxALx𝒢GBLC
23 1 2 3 4 10 14 16 20 21 22 perprag φxDAx⟨“ABC”⟩𝒢G
24 4 5 9 perpln1 φDranL
25 1 3 4 5 24 6 tglnpt2 φxDAx
26 23 25 r19.29a φ⟨“ABC”⟩𝒢G