Description: Lemma for pexmidN . (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pexmidlem.l | |
|
pexmidlem.j | |
||
pexmidlem.a | |
||
pexmidlem.p | |
||
pexmidlem.o | |
||
pexmidlem.m | |
||
Assertion | pexmidlem4N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pexmidlem.l | |
|
2 | pexmidlem.j | |
|
3 | pexmidlem.a | |
|
4 | pexmidlem.p | |
|
5 | pexmidlem.o | |
|
6 | pexmidlem.m | |
|
7 | simpl1 | |
|
8 | 7 | hllatd | |
9 | simpl2 | |
|
10 | simpl3 | |
|
11 | simprl | |
|
12 | inss2 | |
|
13 | 12 | sseli | |
14 | 13 6 | eleqtrdi | |
15 | 14 | ad2antll | |
16 | 1 2 3 4 | elpaddatiN | |
17 | 8 9 10 11 15 16 | syl32anc | |
18 | simp1 | |
|
19 | simp3l | |
|
20 | inss1 | |
|
21 | simp2r | |
|
22 | 20 21 | sselid | |
23 | simp3r | |
|
24 | 1 2 3 4 5 6 | pexmidlem3N | |
25 | 18 19 22 23 24 | syl121anc | |
26 | 25 | 3expia | |
27 | 26 | expd | |
28 | 27 | rexlimdv | |
29 | 17 28 | mpd | |