Metamath Proof Explorer


Theorem pexmidlem4N

Description: Lemma for pexmidN . (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l ˙=K
pexmidlem.j ˙=joinK
pexmidlem.a A=AtomsK
pexmidlem.p +˙=+𝑃K
pexmidlem.o ˙=𝑃K
pexmidlem.m M=X+˙p
Assertion pexmidlem4N KHLXApAXq˙XMpX+˙˙X

Proof

Step Hyp Ref Expression
1 pexmidlem.l ˙=K
2 pexmidlem.j ˙=joinK
3 pexmidlem.a A=AtomsK
4 pexmidlem.p +˙=+𝑃K
5 pexmidlem.o ˙=𝑃K
6 pexmidlem.m M=X+˙p
7 simpl1 KHLXApAXq˙XMKHL
8 7 hllatd KHLXApAXq˙XMKLat
9 simpl2 KHLXApAXq˙XMXA
10 simpl3 KHLXApAXq˙XMpA
11 simprl KHLXApAXq˙XMX
12 inss2 ˙XMM
13 12 sseli q˙XMqM
14 13 6 eleqtrdi q˙XMqX+˙p
15 14 ad2antll KHLXApAXq˙XMqX+˙p
16 1 2 3 4 elpaddatiN KLatXApAXqX+˙prXq˙r˙p
17 8 9 10 11 15 16 syl32anc KHLXApAXq˙XMrXq˙r˙p
18 simp1 KHLXApAXq˙XMrXq˙r˙pKHLXApA
19 simp3l KHLXApAXq˙XMrXq˙r˙prX
20 inss1 ˙XM˙X
21 simp2r KHLXApAXq˙XMrXq˙r˙pq˙XM
22 20 21 sselid KHLXApAXq˙XMrXq˙r˙pq˙X
23 simp3r KHLXApAXq˙XMrXq˙r˙pq˙r˙p
24 1 2 3 4 5 6 pexmidlem3N KHLXApArXq˙Xq˙r˙ppX+˙˙X
25 18 19 22 23 24 syl121anc KHLXApAXq˙XMrXq˙r˙ppX+˙˙X
26 25 3expia KHLXApAXq˙XMrXq˙r˙ppX+˙˙X
27 26 expd KHLXApAXq˙XMrXq˙r˙ppX+˙˙X
28 27 rexlimdv KHLXApAXq˙XMrXq˙r˙ppX+˙˙X
29 17 28 mpd KHLXApAXq˙XMpX+˙˙X