Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019) (Revised by AV, 30-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pgrpsubgsymgbi.g | |
|
pgrpsubgsymgbi.b | |
||
pgrpsubgsymg.c | |
||
Assertion | pgrpsubgsymg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgrpsubgsymgbi.g | |
|
2 | pgrpsubgsymgbi.b | |
|
3 | pgrpsubgsymg.c | |
|
4 | 1 | symggrp | |
5 | simp1 | |
|
6 | 4 5 | anim12i | |
7 | simp2 | |
|
8 | simp3 | |
|
9 | 1 2 | symgbasmap | |
10 | 9 | ssriv | |
11 | sstr | |
|
12 | 10 11 | mpan2 | |
13 | resmpo | |
|
14 | 13 | anidms | |
15 | 12 14 | syl | |
16 | eqid | |
|
17 | eqid | |
|
18 | 1 16 17 | symgplusg | |
19 | 18 | eqcomi | |
20 | 19 | reseq1i | |
21 | 15 20 | eqtr3di | |
22 | 21 | 3ad2ant2 | |
23 | 8 22 | eqtrd | |
24 | 7 23 | jca | |
25 | 24 | adantl | |
26 | 2 3 | grpissubg | |
27 | 6 25 26 | sylc | |
28 | 27 | ex | |