Metamath Proof Explorer


Theorem phplem1OLD

Description: Obsolete lemma for php . (Contributed by NM, 25-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion phplem1OLD AωBAAAB=sucAB

Proof

Step Hyp Ref Expression
1 nnord AωOrdA
2 nordeq OrdABAAB
3 disjsn2 ABAB=
4 2 3 syl OrdABAAB=
5 1 4 sylan AωBAAB=
6 undif4 AB=AAB=AAB
7 df-suc sucA=AA
8 7 equncomi sucA=AA
9 8 difeq1i sucAB=AAB
10 6 9 eqtr4di AB=AAB=sucAB
11 5 10 syl AωBAAAB=sucAB