Metamath Proof Explorer


Theorem phtpc01

Description: Path homotopic paths have the same endpoints. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion phtpc01 F ph J G F 0 = G 0 F 1 = G 1

Proof

Step Hyp Ref Expression
1 isphtpc F ph J G F II Cn J G II Cn J F PHtpy J G
2 n0 F PHtpy J G h h F PHtpy J G
3 simpll F II Cn J G II Cn J h F PHtpy J G F II Cn J
4 simplr F II Cn J G II Cn J h F PHtpy J G G II Cn J
5 simpr F II Cn J G II Cn J h F PHtpy J G h F PHtpy J G
6 3 4 5 phtpy01 F II Cn J G II Cn J h F PHtpy J G F 0 = G 0 F 1 = G 1
7 6 ex F II Cn J G II Cn J h F PHtpy J G F 0 = G 0 F 1 = G 1
8 7 exlimdv F II Cn J G II Cn J h h F PHtpy J G F 0 = G 0 F 1 = G 1
9 2 8 syl5bi F II Cn J G II Cn J F PHtpy J G F 0 = G 0 F 1 = G 1
10 9 3impia F II Cn J G II Cn J F PHtpy J G F 0 = G 0 F 1 = G 1
11 1 10 sylbi F ph J G F 0 = G 0 F 1 = G 1