Metamath Proof Explorer


Theorem phtpycn

Description: A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φ F II Cn J
isphtpy.3 φ G II Cn J
Assertion phtpycn φ F PHtpy J G II × t II Cn J

Proof

Step Hyp Ref Expression
1 isphtpy.2 φ F II Cn J
2 isphtpy.3 φ G II Cn J
3 1 2 phtpyhtpy φ F PHtpy J G F II Htpy J G
4 iitopon II TopOn 0 1
5 4 a1i φ II TopOn 0 1
6 5 1 2 htpycn φ F II Htpy J G II × t II Cn J
7 3 6 sstrd φ F PHtpy J G II × t II Cn J