Metamath Proof Explorer


Theorem pibp21

Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space X is weakly countably compact if every infinite subset of X has a limit point. (Contributed by ML, 9-Dec-2020)

Ref Expression
Hypotheses pibp21.x X = J
pibp21.21 W = x Top | y 𝒫 x Fin z x z limPt x y
Assertion pibp21 J W J Top y 𝒫 X Fin z X z limPt J y

Proof

Step Hyp Ref Expression
1 pibp21.x X = J
2 pibp21.21 W = x Top | y 𝒫 x Fin z x z limPt x y
3 unieq x = J x = J
4 3 1 eqtr4di x = J x = X
5 4 pweqd x = J 𝒫 x = 𝒫 X
6 5 difeq1d x = J 𝒫 x Fin = 𝒫 X Fin
7 fveq2 x = J limPt x = limPt J
8 7 fveq1d x = J limPt x y = limPt J y
9 8 eleq2d x = J z limPt x y z limPt J y
10 4 9 rexeqbidv x = J z x z limPt x y z X z limPt J y
11 6 10 raleqbidv x = J y 𝒫 x Fin z x z limPt x y y 𝒫 X Fin z X z limPt J y
12 11 2 elrab2 J W J Top y 𝒫 X Fin z X z limPt J y