Metamath Proof Explorer


Theorem pimconstlt1

Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimconstlt1.1 xφ
pimconstlt1.2 φB
pimconstlt1.3 F=xAB
pimconstlt1.4 φB<C
Assertion pimconstlt1 φxA|Fx<C=A

Proof

Step Hyp Ref Expression
1 pimconstlt1.1 xφ
2 pimconstlt1.2 φB
3 pimconstlt1.3 F=xAB
4 pimconstlt1.4 φB<C
5 ssrab2 xA|Fx<CA
6 5 a1i φxA|Fx<CA
7 simpr φxAxA
8 3 a1i φF=xAB
9 2 adantr φxAB
10 8 9 fvmpt2d φxAFx=B
11 4 adantr φxAB<C
12 10 11 eqbrtrd φxAFx<C
13 7 12 jca φxAxAFx<C
14 rabid xxA|Fx<CxAFx<C
15 13 14 sylibr φxAxxA|Fx<C
16 15 ex φxAxxA|Fx<C
17 1 16 ralrimi φxAxxA|Fx<C
18 nfcv _xA
19 nfrab1 _xxA|Fx<C
20 18 19 dfss3f AxA|Fx<CxAxxA|Fx<C
21 17 20 sylibr φAxA|Fx<C
22 6 21 eqssd φxA|Fx<C=A