Metamath Proof Explorer


Theorem pjclem4a

Description: Lemma for projection commutation theorem. (Contributed by NM, 2-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1 GC
pjclem1.2 HC
Assertion pjclem4a AGHprojGprojHA=A

Proof

Step Hyp Ref Expression
1 pjclem1.1 GC
2 pjclem1.2 HC
3 elin AGHAGAH
4 2 cheli AHA
5 4 adantl AGAHA
6 1 2 pjcoi AprojGprojHA=projGprojHA
7 5 6 syl AGAHprojGprojHA=projGprojHA
8 pjid HCAHprojHA=A
9 2 8 mpan AHprojHA=A
10 eleq1 projHA=AprojHAGAG
11 pjid GCprojHAGprojGprojHA=projHA
12 1 11 mpan projHAGprojGprojHA=projHA
13 10 12 syl6bir projHA=AAGprojGprojHA=projHA
14 eqeq2 projHA=AprojGprojHA=projHAprojGprojHA=A
15 13 14 sylibd projHA=AAGprojGprojHA=A
16 9 15 syl AHAGprojGprojHA=A
17 16 impcom AGAHprojGprojHA=A
18 7 17 eqtrd AGAHprojGprojHA=A
19 3 18 sylbi AGHprojGprojHA=A