Metamath Proof Explorer


Theorem pjss1coi

Description: Subset relationship for projections. Theorem 4.5(i)<->(iii) of Beran p. 112. (Contributed by NM, 1-Oct-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 GC
pjco.2 HC
Assertion pjss1coi GHprojHprojG=projG

Proof

Step Hyp Ref Expression
1 pjco.1 GC
2 pjco.2 HC
3 2 1 pjcoi xprojHprojGx=projHprojGx
4 3 adantl GHxprojHprojGx=projHprojGx
5 1 pjcli xprojGxG
6 ssel2 GHprojGxGprojGxH
7 5 6 sylan2 GHxprojGxH
8 pjid HCprojGxHprojHprojGx=projGx
9 2 7 8 sylancr GHxprojHprojGx=projGx
10 4 9 eqtrd GHxprojHprojGx=projGx
11 10 ralrimiva GHxprojHprojGx=projGx
12 2 pjfi projH:
13 1 pjfi projG:
14 12 13 hocofi projHprojG:
15 14 13 hoeqi xprojHprojGx=projGxprojHprojG=projG
16 11 15 sylib GHprojHprojG=projG
17 rneq projHprojG=projGranprojHprojG=ranprojG
18 rncoss ranprojHprojGranprojH
19 17 18 eqsstrrdi projHprojG=projGranprojGranprojH
20 1 pjrni ranprojG=G
21 2 pjrni ranprojH=H
22 19 20 21 3sstr3g projHprojG=projGGH
23 16 22 impbii GHprojHprojG=projG