Metamath Proof Explorer


Theorem ply1val

Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses ply1val.1 P=Poly1R
ply1val.2 S=PwSer1R
Assertion ply1val P=S𝑠Base1𝑜mPolyR

Proof

Step Hyp Ref Expression
1 ply1val.1 P=Poly1R
2 ply1val.2 S=PwSer1R
3 fveq2 r=RPwSer1r=PwSer1R
4 3 2 eqtr4di r=RPwSer1r=S
5 oveq2 r=R1𝑜mPolyr=1𝑜mPolyR
6 5 fveq2d r=RBase1𝑜mPolyr=Base1𝑜mPolyR
7 4 6 oveq12d r=RPwSer1r𝑠Base1𝑜mPolyr=S𝑠Base1𝑜mPolyR
8 df-ply1 Poly1=rVPwSer1r𝑠Base1𝑜mPolyr
9 ovex S𝑠Base1𝑜mPolyRV
10 7 8 9 fvmpt RVPoly1R=S𝑠Base1𝑜mPolyR
11 fvprc ¬RVPoly1R=
12 ress0 𝑠Base1𝑜mPolyR=
13 11 12 eqtr4di ¬RVPoly1R=𝑠Base1𝑜mPolyR
14 fvprc ¬RVPwSer1R=
15 2 14 eqtrid ¬RVS=
16 15 oveq1d ¬RVS𝑠Base1𝑜mPolyR=𝑠Base1𝑜mPolyR
17 13 16 eqtr4d ¬RVPoly1R=S𝑠Base1𝑜mPolyR
18 10 17 pm2.61i Poly1R=S𝑠Base1𝑜mPolyR
19 1 18 eqtri P=S𝑠Base1𝑜mPolyR