Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmod.a | |
|
pmod.s | |
||
pmod.p | |
||
Assertion | pmod2iN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmod.a | |
|
2 | pmod.s | |
|
3 | pmod.p | |
|
4 | incom | |
|
5 | 4 | oveq1i | |
6 | hllat | |
|
7 | 6 | 3ad2ant1 | |
8 | simp22 | |
|
9 | ssinss1 | |
|
10 | 8 9 | syl | |
11 | simp23 | |
|
12 | 1 3 | paddcom | |
13 | 7 10 11 12 | syl3anc | |
14 | 5 13 | eqtrid | |
15 | simp21 | |
|
16 | 11 8 15 | 3jca | |
17 | 1 2 3 | pmod1i | |
18 | 17 | 3impia | |
19 | 16 18 | syld3an2 | |
20 | 1 3 | paddcom | |
21 | 7 11 8 20 | syl3anc | |
22 | 21 | ineq1d | |
23 | 14 19 22 | 3eqtr2d | |
24 | incom | |
|
25 | 23 24 | eqtrdi | |
26 | 25 | 3expia | |