Metamath Proof Explorer


Theorem pmod2iN

Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmod.a A=AtomsK
pmod.s S=PSubSpK
pmod.p +˙=+𝑃K
Assertion pmod2iN KHLXSYAZAZXXY+˙Z=XY+˙Z

Proof

Step Hyp Ref Expression
1 pmod.a A=AtomsK
2 pmod.s S=PSubSpK
3 pmod.p +˙=+𝑃K
4 incom XY=YX
5 4 oveq1i XY+˙Z=YX+˙Z
6 hllat KHLKLat
7 6 3ad2ant1 KHLXSYAZAZXKLat
8 simp22 KHLXSYAZAZXYA
9 ssinss1 YAYXA
10 8 9 syl KHLXSYAZAZXYXA
11 simp23 KHLXSYAZAZXZA
12 1 3 paddcom KLatYXAZAYX+˙Z=Z+˙YX
13 7 10 11 12 syl3anc KHLXSYAZAZXYX+˙Z=Z+˙YX
14 5 13 eqtrid KHLXSYAZAZXXY+˙Z=Z+˙YX
15 simp21 KHLXSYAZAZXXS
16 11 8 15 3jca KHLXSYAZAZXZAYAXS
17 1 2 3 pmod1i KHLZAYAXSZXZ+˙YX=Z+˙YX
18 17 3impia KHLZAYAXSZXZ+˙YX=Z+˙YX
19 16 18 syld3an2 KHLXSYAZAZXZ+˙YX=Z+˙YX
20 1 3 paddcom KLatZAYAZ+˙Y=Y+˙Z
21 7 11 8 20 syl3anc KHLXSYAZAZXZ+˙Y=Y+˙Z
22 21 ineq1d KHLXSYAZAZXZ+˙YX=Y+˙ZX
23 14 19 22 3eqtr2d KHLXSYAZAZXXY+˙Z=Y+˙ZX
24 incom Y+˙ZX=XY+˙Z
25 23 24 eqtrdi KHLXSYAZAZXXY+˙Z=XY+˙Z
26 25 3expia KHLXSYAZAZXXY+˙Z=XY+˙Z