Metamath Proof Explorer


Theorem poclOLD

Description: Obsolete version of pocl as of 3-Oct-2024. (Contributed by NM, 27-Mar-1997) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion poclOLD RPoABACADA¬BRBBRCCRDBRD

Proof

Step Hyp Ref Expression
1 id x=Bx=B
2 1 1 breq12d x=BxRxBRB
3 2 notbid x=B¬xRx¬BRB
4 breq1 x=BxRyBRy
5 4 anbi1d x=BxRyyRzBRyyRz
6 breq1 x=BxRzBRz
7 5 6 imbi12d x=BxRyyRzxRzBRyyRzBRz
8 3 7 anbi12d x=B¬xRxxRyyRzxRz¬BRBBRyyRzBRz
9 8 imbi2d x=BRPoA¬xRxxRyyRzxRzRPoA¬BRBBRyyRzBRz
10 breq2 y=CBRyBRC
11 breq1 y=CyRzCRz
12 10 11 anbi12d y=CBRyyRzBRCCRz
13 12 imbi1d y=CBRyyRzBRzBRCCRzBRz
14 13 anbi2d y=C¬BRBBRyyRzBRz¬BRBBRCCRzBRz
15 14 imbi2d y=CRPoA¬BRBBRyyRzBRzRPoA¬BRBBRCCRzBRz
16 breq2 z=DCRzCRD
17 16 anbi2d z=DBRCCRzBRCCRD
18 breq2 z=DBRzBRD
19 17 18 imbi12d z=DBRCCRzBRzBRCCRDBRD
20 19 anbi2d z=D¬BRBBRCCRzBRz¬BRBBRCCRDBRD
21 20 imbi2d z=DRPoA¬BRBBRCCRzBRzRPoA¬BRBBRCCRDBRD
22 df-po RPoAxAyAzA¬xRxxRyyRzxRz
23 r3al xAyAzA¬xRxxRyyRzxRzxyzxAyAzA¬xRxxRyyRzxRz
24 22 23 sylbb RPoAxyzxAyAzA¬xRxxRyyRzxRz
25 24 19.21bbi RPoAzxAyAzA¬xRxxRyyRzxRz
26 25 19.21bi RPoAxAyAzA¬xRxxRyyRzxRz
27 26 com12 xAyAzARPoA¬xRxxRyyRzxRz
28 9 15 21 27 vtocl3ga BACADARPoA¬BRBBRCCRDBRD
29 28 com12 RPoABACADA¬BRBBRCCRDBRD